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Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that the information 
is fit for any particular purpose. The content of this document reflects only the author`s view – the European 
Commission is not responsible for any use that may be made of the information it contains. The users use the 
information at their sole risk and liability. 
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Executive Summary 

IoT (Internet of Things), which denote connected devices and services are on a rapid increase, and 
as they are gaining wider and wider adoption in the security critical fields, it becomes more urgent to 
ensure the security of these devices. The VESSEDIA project aims to enhance the security of IoT 
devices by improving already existing software analysis tools to help the manufacturers to develop 
more secure devices. 

The goal of this document is to outline the most important security requirements of the IoT. Our goal 
was to determine these requirements at a higher level, so the final requirements can be applied to 
different IoT systems. To set these requirements, we divided the IoT into different layers, and we 
analysed these layers separately from the security perspective. Finally, we collected a set of 
requirements and recommendations, which are required for an IoT device to ensure secure 
functionality. 

In requirements engineering, risk assessment is used to identify flaws in a given system, and 
associate risks according to the severity and potential exploitability of these flaws. To facilitate of this 
process, we outlined as well some common risk assessment technique, which can be applied in the 
field of IoT. Finally, we analysed, how ACSL, the specification language of Frama-C can be used to 
verify security related C libraries. This work will be utilized as a general estimation of the capabilities 
of formal verification techniques in security requirement verification, and our findings can be used as 
a direction of possible future development. 
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Chapter 1 Introduction 

1.1 VESSEDIA motivation and background 

The VESSEDIA project aims to bring safety and security to the next generation of software 
applications and internet connected devices. In our rapidly changing world, the Internet has been 
the source of many benefits for individuals and companies alike, transforming entire industries. With 
this new technology, capable of connecting billions of devices and people together, new threats have 
also appeared – threats VESSEDIA will help software developers address in order to create 
connected applications that are safe and secure. VESSEDIA proposes to enhance and scale up 
modern software analysis tools, in particular the mostly open-source Frama-C analysis platform, to 
make them useful and accessible to a wider audience of developers working on connected 
applications. At the forefront of connected applications are the Internet of Things (or IoT for short), 
where we have seen explosive growth and where security risks have become all too real. VESSEDIA 
will focus on this domain to demonstrate the benefits our tools bring to the table when developing 
connected applications. VESSEDIA will tackle this challenge by 1) developing a methodology that 
makes it possible to adopt and use source code analysis tools as efficiently and with similar benefits 
as it is already possible in the case of highly-critical applications, 2) enhancing the Frama-C toolbox 
to enable efficient and fast implementation, 3) demonstrating the capabilities of the new toolbox on 
typical IoT applications, including an IoT Operating System (Contiki), 4) developing a standardisation 
plan for generalising the use of the toolbox, 5) contributing to the Common Criteria certification 
process, and 6) defining a “Verified in Europe” label for validating software products with European 
technologies such as Frama-C. 

 

1.2 Structure of the document 

After these introductory sections, 0 defines the typical security objectives for IoT, starting with a 
general overview of the IoT architecture. It then characterizes the possible attacker actors with their 
strengths and motivations. After a quick overview of the security properties, it collects the general 
assets along with the corresponding objectives. Chapter 3 gives an introduction to the threat 
modelling methodologies such as attack trees, misuse cases and SDL (Security Development 
Lifecycle) threat modelling. After an overview of the IoT attack surface in Chapter 4, the typical 
threats and general IoT security requirements are detailed in the layered approach described in 2.1. 
Security requirements may not applicable or worthwhile in every case. Chapter 5 describes some 
risk analysis techniques that can help to find out the most serious threats and the corresponding 
requirements. In Chapter 6 formal specifications of simple security requirements are presented 
based on the minimal contract concept. Finally, Chapter 7 concludes the document and paves the 
way for the subsequent work in the project. 

 

1.3 Related deliverables 

As it was mentioned previously this document serves as a baseline for the subsequent work by listing 
the most common, high level security requirements for the IoT. More detailed security requirements 
will be outlined in the D1.2, where the use cases from WP5 will have a more detailed analysis. These 
requirements will be used in WP4, when we will carry out the security evaluation for the use cases 
in D4.6. 
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Chapter 2 Security objectives for IoT 

As it is predicted by IHS technology1, the IoT market will grow from an installed base of 15.4 billion 
devices in 2015 to 30.7 billion devices by 2020 and 75.4 billion by 2025. This many devices 
connected to the internet raise many security risks, which have to be addressed in the future. 
Securing data on the IoT ecosystem raises a lot of challenges, like accessibility of remote devices, 
lack of processing power to use traditional security mechanisms, and the continuously growing attack 
surface, as the number of devices and systems increase. Currently (and in the future), there is no 
silver bullet for IoT to effectively mitigate these security issues2.  

Determining security requirements for IoT can be approached similarly to any other target. In 
information systems, providing security covers several aspects, such as defending information from 
unauthorized access, usage, disclosure, disruption, modification, perusal, inspection, recording or 
destruction. Security objectives are the high-level statement of intent and goals that are most 
important to the stakeholders and to fulfill the requirements that must be met to comply with relevant 
legislation, policies and standards. 

The proposed methodology for determining the security requirements is the following: 

1. Identify functional requirements and business goals: it is hard to determine the general 
functional requirements for IoT. In the definition, IoT is an inter-networking device, which is 
capable to collect and exchange data. In this study, we can separate the IoT architecture into 
3 different layers, which can be analysed separately. 

2. Collect assets, which should be protected in the system (e.g. sensitive user data). These 
assets can vary from device to device, but we define some general ones. 

3. Identify security objectives of each asset (e.g. confidentiality of sensitive user data should be 
protected)  

4. Perform threat modelling and identify threats to the security objectives of the assets. 
5. Identify security requirements to cover, mitigate or reduce the risk associated with the 

identified threats. 
6. Evaluate/test/verify that the system fulfils the security requirements. 

 

 

                                                

1 IHS TECHNOLOGY: IoT platforms: enabling the Internet of Things https://cdn.ihs.com/www/pdf/enabling-IOT.pdf March 
2015 
2 Wind River Systems SECURITY IN THE INTERNET OF THINGS https://www.windriver.com/whitepapers/security-in-the-
internet-of-things/wr_security-in-the-internet-of-things.pdf 2015 

https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
https://www.windriver.com/whitepapers/security-in-the-internet-of-things/wr_security-in-the-internet-of-things.pdf
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Figure 1 illustrates the terms used in this document and their relationships between each other: 
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Figure 1: The elements of risk and their relationships according to ISO 15408:2005 

 

2.1 IoT architecture 

Identifying security requirements for an ecosystem as complex as the Internet of Things is non-trivial 
task. One way to simplify the problem is to break it down into smaller ones, by partitioning the whole 
into smaller parts. In case of IoT devices and systems, a multitude of approaches exist in scientific 
literature to identify and separate the different layers, thus helping us conduct security analysis on 
each one separately, focusing on problems related to a smaller group of components.  

One of the simpler models for identifying these layers is the three layer IoT architecture, as seen in 
Figure 2. Those familiar with network stacks might recognize its structure being similar to the OSI 
model. An advantage of this model for the purpose of security analysis is that the layers each have 
very different types of devices and services, thus the number of overlapping requirements can be 
minimized. 
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Figure 2 Three layer IoT architecture 
Source: Radio Frequency Identification from System to Applications 3 

 

• Perception layer 

The perception layer percieves the physical reality around us – a fact somewhat 
foreshadowed by its aptly chosen name. Devices in this layer are tasked with being a bridge 
between the analog and the digital world. Both data acquisition – using conventional sensors 
or more complicated methods – and preliminary data processing are happening here, as the 
data is being prepared for transmission to the layers above. The perception layer also 
includes devices which are focused on making objects percievable – like RFID tags or even 
barcodes.  

• Network layer 

The network layer includes both the components responsible for the transmission of the data 
between the layer above and the layer below, and the storage of such data for later retreival. 
A wide variety of technologies are in use today to facilitate the transmission of data gathered 
by the perception layer: cellular networks, traditional wired networks, meshed wireless 
networks and satellite communications can all serve as infrastructure for the transmission of 
said data. A significant portion of the data gathered ends up being transmitted to and stored 
in cloud computing systems. Many cloud service providers today have offerings targeting IoT 
applications, offering cost effective transmission, storage and processing for busineses all 
over the globe. 

 

                                                

3 Elena de la Guía, María D. Lozano and Víctor M.R. Penichet (2013). Interacting with Objects in Games Through RFID 
Technology, Radio Frequency Identification from System to Applications, Dr. M. I. B. Reaz (Ed.), InTech, DOI: 
10.5772/53448. Available from: https://www.intechopen.com/books/radio-frequency-identification-from-system-to-
applications/interacting-with-objects-in-games-through-rfid-technology 
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• Application layer  

The application layer analyzes the data coming from and stored in the network layer, and 
presents the data in a way that is convenient and exploitable by end users or other services 
building on the IoT architecture – and thus serves as the front end for the whole system. The 
application layer also includes the devices that are capable of acting on the information 
acquired – using such information to make decisions and control processes with or without 
human interaction. 

Another version of this three layer architecture can be seen in Figure 3. While the nomenclature is 
different, the layers themselves can be mapped to the three layer architecture described previously. 

• Communications Network → Network Layer 

• Endpoint Ecosystem → Perception Layer 

 

 

Figure 3: A different version of the three layer IoT architecture 

Source: IoT Security Guidelines Overview Document4 

While this three-layered architecture will serve us well for the purposes of establishing security 
requirements, it is important to mention that several other models exist for describing the architecture 
of IoT systems, as seen of Figure 4. 

                                                

4https://www.gsma.com/iot/wp-content/uploads/2016/11/CLP.11-v1.1.pdf 
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Figure 4: Comparison of proposed IoT architectures (a) Three-layer, (b) Middleware based, (c) SOA based, 
(d) Five-layer 

Source: Al-Fuqaha et al. 2015, p.23495 

These five or even six layered architectures try to address different methodologies for designing IoT 
systems – by placing service composition or management into different layers, or by partitioning the 
application layer even further. Nonetheless, we will be using the three-layered approach presented 
in 0 to examine the security issues related to the different layers, analyzing them one by one to 
identify threats and propose ways to neutralize them. 

 

2.2 Attacker model for IoT  

An important part of the threat modelling process is the development of an attacker profile. Such a 
profile describes possible internal and external agents that might want to realize threats.  

We have identified several different attacker profiles in a typical IoT ecosystem: 

• The Rogue Employee works as tech support or customer service agent for a Manufacturer 
or a Service Provider. In order to carry out his tasks, he has limited access to the backend 
servers, including any functionality that allows him to access individual end-user devices 
remotely. He may not necessarily be capable of creating exploits, but he has full knowledge 
of the actual IoT platform, including possible access to its source code. He can abusethis 
position mainly to steal user data for profit; with the objectiveto remove any traces of his 
activities. 

• The Hacker has access to debug and development tools, and has the resources necessary 
to create and deploy exploits targeting all components of the IoT platform as well as individual 
end-user devices. He also has reverse-engineering skills, and is assumed to have insider-
level knowledge of the inner workings of the IoT platform. His eventual goal is gaining money 
by stealing valuable user data, taking over end-user devices (gaining access to the user's 
other networked devices and their data through the local network if possible) and the IoT 
platform servers, or building a botnet. In addition, a Hacker may be motivated to spy on a 
particular high-value target by taking over their devices and stealing their user data. 

• The Vandal has similar resources and expertise as the Hacker, but his motivation is 
fundamentally different: instead of making money, he is interested in fame and prestige, 
possibly due to hacktivist reasons. Thus, he is interested in disrupting the operation of the 

                                                

5https://www.researchgate.net/publication/305222860_Impact_Analysis_of_the_Internet_of_Things_on_the_Value_Chai
n_in_Manufacturing_Industries 
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IoT platform as well as that of individual devices in visible ways and leaving his mark through 
defacement of publically-accessible IoT platform web components. In addition, in case he 
gains access to the user's local network through a compromised device, he can abuse the 
user in various disruptive ways, e.g. yelling through a baby monitor's microphone. 

• The Burglar is a professional criminal with access to high-tech equipment, and in-depth 
knowledge about the workings of end-user surveillance devices connected to the IoT 
platform. He has limited physical access to the building exterior – including the capability of 
getting within Wi-Fi or Bluetooth transmission range of all connected surveillance devices 
without being detected. His main goals are to subvert the operation of surveillance equipment 
– or manipulate stored footage – preferably remotely in order to gain entrance to the building 
without leaving evidence.  

• Malware specializes in making malicious extensions and plug-ins for the IoT devices, and 
tricking users into installing them. Once installed on a device, such a malicious extension 
may have the ability to alter the basic operation of the device, spy on the device's user, and 
compromise other devices as well (e.g. by giving the Malware owner access to the user's 
account). In addition, the deployed malware can encrypt any data – such as video footage or 
personal media data – stored on the device, and then extort the device's owner for the 
encryption key. 

• The Advanced Persistent Threat (APT) can be an individual or a group that specialises in 
operative procedures involving physical presence, aiming at high value targets, and 
specifically focusing on the IoT platform. Covert operations carried out by an APT can include 
dumpster diving, phone theft, wiretapping, social engineering, and non-invasive scans of 
biometric data. 

The highest level of technical skill is possessed by the Hacker, Vandal and the Malware – and 
potentially the APT – followed by the Burglar who may also need to resort to hacking methods in 
order to gain unauthorized access to user’s accounts as well as the Rogue Employee who may be 
able to install backdoors into the IoT service itself. 

 

2.3 Security properties 

In this section we review some of the most commonly used security properties to define the security 
objectives of each asset.  

2.3.1 The CIA triad 

Generally speaking, the Confidentiality, Integrity and Availability triad is used to express security 
objectives of an asset. 

• Confidentiality: This property ensures that the information remains secret and will be 
disclosed only to authorized entities.  

• Integrity: Preserving the integrity of a system means that the information it holds remains 
intact and complete. To preserve the integrity of information, modifications and data 
manipulation by unauthorized parties have to be prevented.  

• Availability: The availability of an information or an information system means that it is 
accessible and available when it is needed. High availability systems aim to prevent service 
disruptions. Ensuring availability involves preventing denial-of-service attacks. 

2.3.2 Parkerian Hexad 

The Parkerian Hexad extends the Confidentiality, Integrity and Availability triad with three more 
security properties, which are extensions to the original CIA properties: 
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• Possession or Control: Possession means the ownership or control of the protected 
information. In contrary to the confidentiality, possession does not require knowledge of the 
information itself, just the ability to control it. 

• Authenticity: This security property ensures that the information is original in the sense that 
it was not tampered or altered. It extends the integrity property by providing evidence of the 
origin or authorship of the information. 

• Utility: Extends the avaliability property by describing the usefullness of it. For example 
encrypted data without the correct key is not useful to anybody. 

2.3.3 Complimentary attributes to define objectives  

This list of main objectives can be extended6 to include a number of other security objectives, which 
refine the CIA triad and the Parkerian Hexad. 

Objective Description 

access control Restricting access to resources to privileged entities. 

adoption of content and intend A means to bind information to an entity, such as digital 
signatures. 

anonymity Concealing the identity of an entity involved in a process. 

authorization In our context it typically means the process of specifying 
access rights to certain resources. 

certification Endorsement of information by a trusted entity. 

entity authentication or 
identification 

Corroboration of the identity of an entity (e.g., a person, a 
computer terminal, a credit card, etc.). In our context it usually 
means the process of verifying the identity of the user or a 
device in order to determine its accuracy and trustworthiness. 

message authentication Corroborating the source of information; also known as data 
origin authentication. 

non-repudiation Preventing the denial of previous commitments or actions. 

ownership A means to provide an entity with the legal right to use or 
transfer a resource to others. 

receipt confirmation Acknowledgement that information has been received. 

revocation Retraction of certification or authorization. 

service confirmation Acknowledgement that services have been provided. 

validation Ensuring that data is safe prior to use. 

witnessing Verifying the creation or existence of information by third 
party. 

Table 1: List of security objectives 

The selection of security objectives strongly depends on the assumptions about the attacker and on 
the general scenario and policies that the software is exposed to. The exact security objectives 
relevant for VESSEDIA use-cases will be discussed in D1.2. 

The table hereafter illustrates how security objectives can be related to threats in the STRIDE model. 

Threats (STRIDE) CIA Parkerian Complementary 

Spoofing identity of user Integrity Authenticity Authentication 

Tampering with data Integrity Integrity Integrity 

Repudiation of the action Integrity Integrity Non-repudiation 

                                                

6  A. Menezes, P. van Oorschot, and S. Vanstone.Handbook of Applied Cryptography, CRC Press, 1996. 
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Threats (STRIDE) CIA Parkerian Complementary 

Disclosure of information Confidentiality Confidentiality Confidentiality 

Denial of service Availability Availability Availability 

Elevation of privilege for 
user 

Integrity Integrity Authentication and 
Authorization 

Table 2: Connection between the threats in STRIDE model and security objectives 

 

2.4 General assets of IoT 

Data assets 

• Personally identifiable information7 (PII): Some IoT devices may store sensitive or 
confidential user data, such as private photos, contacts, video recordings, log files, sensor 
data and so on. The users expect that their files are not available to and cannot be tampered 
by third parties, and that they would be available on demand. 

• Credentials: IoT devices or the IoT ecosystem may require user credentials for device 
administration or cloud service access. After providing the correct username and password, 
all features and services of the device become available for administration. Thus, user 
credentials are critical assets which are expected to remain secret. 

• Device settings: Device configuration settings are mandatory parts of operation. 
Configuration settings might include additional credentials as well and further access control 
related rules. In case of a security breach, reconfigured devices might serve as a hop for 
attackers to mount additional attacks. 

• Application data: Applications running on IoT devices may use and store application related 
data. These data pieces may not contain any sensitive information, but can be used to 
understand application logic or to modify the state of the application in a malicious way. 

• Device identification data: Device identification may rely on unique data stored in the 
device, such as MAC address, serial number or other unique device identification number. 

• Sensor data: Correct sensor data is essential for the proper operation of the IoT device. 

 

Software assets 

• Firmware: The software running in an IoT device generaly consist of a bootloader, kernal 
and application software. Depending on the actual architecture the bootloader may contain 
multiple stages and in case of real time operating systems (RTOS) the application part is 
compiled along with the core OS. 

• Server software: The server software provides backend services for the IoT devices and 
may provide remote access to the devices via web or mobile user interfaces. 

• Mobile application: Other than web based administrator interfaces, it is trending to access 
the IoT device via a custom mobile application, which makes it the part of the IoT ecosystem. 
Typically mobile applications access the IoT device via the IoT backend server or via local 
access, such as using local network, bluetooth or other local wireless connections. 

 

Hardware assets 

                                                

7 https://en.wikipedia.org/wiki/Personally_identifiable_information 
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• JTAG key: The JTAG port is the standard debugging interface of embedded devices. In case 
a production device provides debugging support, the JTAG interface has to be protected with 
a JTAG key, which is fused to the hardware. 

• Fused secrets: IoT devices typically contain a system on a chip (SoC), which integrates all 
components of an electronic system. A modern SoC integrates secure processor and a 
secure storage also. The secure storage is a one time programmable memory, which is 
accessible only by the secure processor and only the secure processor can perform 
operations with the secrets. In most cases the fused secrets form the root of trust and made 
the chain of trust possible. 

 

Cryptographic assets 

• Private keys: SSL/TLS secured connections require public-key cryptography to securely 
establish a shared session key between the two parties. Obtaining the private key 
corresponding to the public party advertised in one of the server component’s x.509 
certificate would allow an attacker to impersonate the server. In an IoT environment typically 
the backend service, the web user interface in the cloud and the web administration interface 
in the device supports SSL/TLS connections, which requrire the storeage of private keys. 
With the private key obtained, a malicious third party could initiate man-in-the-middle attacks 
and intercept communication between the parties. 

• Certificates: Signature verification (e.g. firmware update) and the establishment of an 
SSL/TLS connection require trusted certificates to make sure that the data sent by the other 
party was not changed. 

 

Using the CIA triad, the following security 
objectives can be defined for the collected 
assets 

Confidentiality Integrity Availability 

Personally identifiable information X   

Credentials X X X 

Device settings X X X 

Application data X X X 

Device identification data X X X 

Sensor data X X  

Firmware  X X 

Server software  X X 

Mobile application  X X 

JTAG key X   

Fused secrets X   

Private keys X X  

Certificates  X  

Encryption keys X   

Table 3: Security objectives for common IoT assets 

 

2.5 Regulations 

Security requirements should also be derived from regulations set by national authorities. These 
regulations concern Digital Service Providers (DSP), Operators of Essential Services (OES), 
Governing agencies, and all organizations which offer goods and services or monitoring of 
individuals. There is no single international framework for cybersecurity law, but some multi-lateral 
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efforts have taken place. Two main regulations can be highlighted, one is the GDPR8 regulation in 
the EU, which takes over the 95/46/EC directive, and a newly proposed legislation from the US9 
“Internet of Things Cybersecurity Improvement Act 2017”. 

2.5.1 General Data Protection Regulation 

The GDPR aims to bring a single standard for data protection among all member states in the EU10. 
Although it was not originally intended for IoT, many of its application affect this domain. To 
complement the GDPR, a new proposal of the e-privacy directive (also known as the “cookie law”) 
has been made in 2017 January, which replaces the current directive with a new legislation. The 
new legislation standardises privacy rules between EU members, protects the people from 
unsolicited electronic communication (aka. spam), and it sets a high level of privacy rules for 
electronic communication.11  

The GDPR applies to any company that controls or processes personal data of Europeans through 
the offering of goods and services, even if the company itself has no physical presence in Europe. 
In case of a security breach, the company would be required to pay fines of up to 4% of its annual 
global revenue or €20 million for violations (whichever is greater).  

The GDPR is strengthening the privacy rights of individuals, whose personal data is being 
processed, including through12 

• the need for the individual’s clear consent to the processing of personal data; 

• the right to access by the subject to his or her personal data; 

• the right to rectification, to erasure and ‘to be forgotten’; 

• the right to object, including to the use of personal data for the purposes of ‘profiling’; 

• the right to correct the data if it is out of date, incomplete, or incorrect; 

• the right to be notified within 72 hours upon the company realizing a data breach that 
compromised personal data; 

• and the right to data portability from one service provider to another. 

The new regulation obligates the companies to integrate security and privacy by design features in 
their products. To support the companies, the European Union Agency for Network and Information 
Security (ENISA) has released a report to provide a basis for better understanding of the current 
state of the art concerning privacy by design with a focus on the technological side.13 However the 
report specifies several methods for securing communication, private data and user anonymity, it 
does not point out any recommendation for the actual implementation. 

2.5.2 IoT Cybersecurity Improvement Act 

This legislation was proposed by the US Senate to establish minimum requirements for federal 
procurements of connected devices. The regulation would force the internet-connected device 
vendors to provide certification ensuring that the device: 

• Is capable of accepting properly authenticated and trusted updates from the vendor 

• Does not contain any hardware, software, or firmware components with any known security 
vulnerabilities or defects listed in the National Vulnerability Database (NVD) or similar 
databases. 

• Uses only non-deprecated industrial standards. 

                                                

8 http://eur-lex.europa.eu/eli/reg/2016/679/oj 
9 https://www.scribd.com/document/355269230/Internet-of-Things-Cybersecurity-Improvement-Act-of-2017 
10 https://en.wikipedia.org/wiki/Cyber-security_regulation 
11 https://ec.europa.eu/digital-single-market/en/proposal-eprivacy-regulation 
12 https://blog.nxp.com/security/protecting-the-i-in-the-iot-gdpr-and-future-challenges 
13 https://www.enisa.europa.eu/publications/privacy-and-data-protection-by-design 
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• Does not use any hard-coded credentials (passwords, user names, keys etc.). 

The legislation also requires the vendors to notify government customers of newly discovered 
vulnerabilities and defects and provide updates to address these vulnerabilities in a timely manner. 
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Chapter 3 Threat modelling methodology 

The aim of threat modelling is identifying threats, which are then rated and classified, then 
countermeasures are proposed to reduce risks. Several techniques exist for a systematic approach 
to cover as many aspects of the system as possible for revealing threats. Threat modelling is usually 
preceded by understanding the system and gathering information about it, typically by identifying 
stakeholders, assets to be protected and relevant security objectives. We may also need to specify 
a selection of attacker profiles, describing both internal and external actors in order to understand 
their motivation. Many methodologies exist to systematically enlist and describe threats to a system. 
In the following sections we describe the three most common approaches: attack trees, misuse 
cases and the STRIDE per element approach, defined in the Security Development Lifecycle (SDLC) 
methodology by Microsoft. 

 

3.1 Attack trees 

Attack trees were first proposed by Schneier [12] as a systematic way to look at threats. Attack trees 
are conceptual diagrams which reflect the anticipated options of attackers to achieve their goals.   

An attack tree consists of a root node, and some internal and leaf nodes. The root node on the top 
symbolizes the ultimate goal of the attackers. From the bottom up, nodes represent the conditions 
which must be satisfied in order to make the direct parent node true.  

Equivalently, these trees (which are actually acyclic directed graphs) can be seen as monotonous 
logical expressions on the leaf actions (see Figure 5), where necessary actions are joined by AND 
clauses and sufficient actions are joined by OR clauses as their common parent nodes. In the first 
case, every child node must be satisfied; in the other, even one is enough.  

An actual attack consists of actions for which the logical expression corresponding to the attack tree 
is true. In short, when the root node is satisfied the attack is complete.  

 

Goal

OR

Action

Action

Goal

AND

Action

Action

 

Figure 5: AND and OR parent nodes in attack trees 

 

Such a representation of threat modelling with attack trees, being an iterative process, allows a lot 
more than just saving work on enumerating threats – it enables continuous incorporation of new 
information to the nodes based on lessons learned from past incidents that happened to different 
systems, like the possibility of an attack or the associated resources for a successful attack (for 
instance time needed to accomplish a certain step, associated costs or the preparedness of the 
adversary). 
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Figure 6: An example attack tree of an imaginary healthcare system 

Attack trees express an inherent property of a given system and are thus implementation 
independent. This property allows reusing attack trees, such as including results from past work or 
use present ideas in the future.  

Examples from literature regarding IoT include Nurse et al.’s [13] work of categorizing possible IoT 
insider attack vectors of 16 (8+8) different types, ranging from classic memory exploitation to data 
leaks. Later, Kammüller et al. [14] performed a threat analysis in IoT scenarios using the attack tree 
methodology. They mostly focused on insider threats that may affect the IoT system (calling them 
“smart insiders”). They focused on two of Nurse et al.’s 16 possible attack vectors: (I) using the 
storage system of the device for copying sensitive data, and (ii) compromising the communication 
channel for misconfiguration. These two vectors were later formally analysed and which resulted in 
a conclusion that they may be exploitable by many possible attacks.  

 

3.2 Misuse/abuse cases 

During requirements engineering, use cases have become increasingly widespread to describe and 
verify normal and correct ways of using a system for a certain purpose. Similarly, we can define 
misuse and abuse cases which are most commonly used for security perspectives. Misuse cases 
intend to describe unexpected usage or abnormal behaviour of the system, i.e. a selection of 
conditions, when the system does not work. Abuse cases are similar, but they describe intentional 
abnormal behaviour, i.e. what a hacker would intend to do with the system and define his or her 
requirements for a successful attack.  

First suggested by Sindre and Opdahl [15], it goes beyond describing regular actors and use cases 
by shifting from the perspective of the owner’s to the adversary’s, and the ways use cases can be 
threatened, exploited or hindered. In addition, these diagrams also include countermeasures to 
mitigate the threats, thus one can be prepared for abnormal behavior and see if all applied protection 
techniques are sufficient. Misuse cases can be used together with attack trees. 
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Misuse/abuse case diagrams usually include textual description, which provide more details about 
these cases and the relationships between them, along with the appropriate requirements and 
sequences of actions. 

0 below shows an example of a misuse case having a simple web shop, where the attacker’s goal 
is to obtain specific data about a user: either the user’s credentials or other confidential data specified 
during registration (such as credit card number). 
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Figure 7: An example misuse case diagram 

In the above described scenario, an attacker can eavesdrop (sniff) communication over the network, 
or can obtain some data of his or her interest from the user registration or user transactions. 
Defending against an attacker with these objectives is also relatively simple: by encrypting 
communication properly the eavesdropping attack is mitigated. 

There are several extensions to the misuse/abuse case approach, for instance Røstad [16] 
complemented the diagrams with model elements representing insider threats and vulnerable 
functionalities of the system. 

 

3.3 SDL threat modelling 

The STRIDE14 model assumes that attackers will follow one or more of the following attack vectors.  

• Spoofing identity. An attacker will try to hide his identity or take another user’s or platforms 
ID. Examples are illegally accessing and then using another user's authentication data or 
tokens or faking a network address. 

• Tampering with data. The attacker might perform a malicious modification of data. This can 
be done on persistent data or on data flows in the network. 

• Repudiation. The attacker will try to deny having performed an action, and make sure that 
other parties cannot prove otherwise. 

• Information disclosure. Attackers will attempt to breach the confidentiality of information, 
i.e, disclose data to individuals who are not supposed to have access to it. 

• Denial of service. Denial of service (DoS) attacks prevent valid user the access to a service, 
either by intercepting the communication paths or disabling the services itself (for instance 
by overloading it with bogus tasks). 

                                                

14  Microsoft, The STRIDE Thread Model, http://msdn.microsoft.com/library/ms954176.aspx, 2005 

http://msdn.microsoft.com/library/ms954176.aspx
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• Elevation of privilege. Unprivileged users or processes will attempt to gain privileged 
access, especially root or administrator rights. Through this access, the entire system could 
potentially be compromised.  
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Chapter 4 Security requirements for IoT 

Security requirements can be defined as “non-ambiguous and verifiable statements implementing 
security objectives”; yet other definition state them being “constraints on the functions [that] … 
operationalize … security goals”15; whichever way, they should express the correct, intended system 
behaviour, rather than just enumerating undesired actions. There are several methods to define 
security requirements for a given information system, however, there is no universally accepted 
approach to define their extent16. In the following, we sketch the two main approaches: 

Building requirements 

The first approach consists in building requirements from the objectives, using elicitation techniques. 

The CERT Coordination Center defined a methodology for requirements building and elicitation, 
called Security Quality Requirements Engineering (SQUARE)17, which is referenced by US 
Department of Homeland Security18. Besides including rules for the prior threat analysis, this method 
recommends: 

• the use of elicitation techniques, three of them being recommended19; 

• categorization of requirements (however SQUARE does not provide a definite method on this 
topic); 

• prioritization of requirements, using Analytic Hierarchy Process (AHP); 

• peer reviewing of requirements. 

Selecting requirements 

The second approach consists in selecting requirements from a standard catalogue in order to cover 
the objectives, and define ad-hoc requirements only whenever an objective is not completely covered 
by existing requirements. The most standard requirements catalogue is Common Criteria20. 

There is also a method called Security Requirements Engineering Process (SREP), which is a kind 
of cross-process including SQUARE and Common Criteria, including notions of reuse21. 

Setting security requirements is a challenging task, where the high level requirements should be 
considered during the design phase to achieve appropriate level of security. However, often the 
vulnerabilities are not found in the security architecture but instead inside the actual implementation 
of a given functionality. On the other hand, low level security requirements can be defined, but such 
requirements lose their portability, because a specific requirement for a system depends on the 
architecture and the applied technologies. 

To achieve a middle ground, we inspected the IoT systems from a layered perspective. This way, 
we can set more detailed requirements for the IoT without being too specific. We applied this layered 

                                                

15 Ch. Haley, R. Laney, J. Moffett, and B. Nuseibeh. Security Requirements Engineering: A Framework for Representation 
and Analysis. IEEE Trans. Softw. Eng. 34, 1. January 2008 

16 I. Tondel, M. Jaatun, P. Meland. Security Requirements for the Rest of Us: A Survey. IEEE Software, vol. 25, no. 1, pp. 
20-27, January/February, 2008 

17 Nancy R. Mead, Eric D. Hough, Theodore R. Stehney II. Security Quality Requirements Engineering (SQUARE) 
Methodology, Carnegie Mellon SEI - 2005 

18  See DHS - BSI website at https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements/232-BSI.html 
19 Issue-Based Information System (IBIS), Joint Application Development (JAD), and Accelerated Requirements Method 

(ARM) 
20 Common Criteria for Information Technology Security Evaluation - part 2 : Security functional components - September 

2012 - Version 3.1 Revision 4 – www.commoncriteriaporta.org 
21 Daniel Mellado, Eduardo Fernández-Medina, Mario Piattini. A common criteria based security requirements engineering 

process for the development of secure information systems – Elsevier - 2006 
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approach during the threat analysis and during writing the security requirements. We also 
investigated an approach of choosing some minimum requirements for the IoT, which have to be 
applied to ensure sufficient security. The latter approach led some additional recommendations for 
the actual implementations, how these requirements can be fulfilled. 

 

4.1 Attack surface in the Internet of Things 

Aligned with the approach of OWASP, the attack surface of a system can be defined as the boundary 
through which an attacker can interact with it, like feeding malicious input or extract information. It 
includes all inputs and outputs through which a user can influence and reach the system - application 
arguments and parameters, user interfaces, APIs, network connections, files from the file system, 
system settings, databases, inter-process communications, and so on. More formally, the OWASP 
approach defines the attack surface of an application22 as: 

1. the sum of all paths for data/commands into and out of the application, and  
2. the code that protects these paths (including resource connection and authentication, 

authorization, activity logging, data validation and encoding); and  
3. all confidential and sensitive data used in the application, including secrets and keys, critical 

business data and Personally Identifiable Information, and  
4. the code that protects this data (including encryption and checksums, access auditing, and 

data integrity and operational security controls). 

One can substantially increase security by reducing the attack surface. Given that all possible 
interfaces can be used by various actors, each with different roles and privilege levels, the complexity 
of the attack surface is usually enormous. This is why the usual approach is to group such vulnerable 
areas into categories based on their functionality, design, and the technologies utilized – such as 
administrative, transactional, or monitoring interfaces, authentication, forms, and so on. 

Understanding the attack surface of the system is essential before source code analysis can be used 
to search for potential vulnerabilities. After the inputs and outputs have been identified, data can be 
followed from its initial point throughout the code to find ways it can cause undesired behavior by 
doing data flow analysis – using the same principle, such analysis can also show how sensitive 
information can be leaked from the system. 

Possibly vulnerable areas should be categorized by risk level, especially when dealing with a 
performance and power-critical IoT environment. Even though the entire attack surface of the system 
may have been correctly identified, due to performance requirements, the countermeasures that 
have been deployed may not be complete and focus only on the most critical parts of the system 
(access to sensitive data, privilege escalation, or memory errors). Even these measures may be 
optimized for the resource constrained environment, and as such have significant limitations. In 
summary, whatever the scenario, our goal is to find a balance between covering all possible security 
threats and guaranteeing the functionality and availability of the system. 

The attack surface in the domain of IoT systems is diverse and comprises numerous potential points 
of vulnerability, including software and data that reside with the product, communication channels, 
as well as remote data storage and processing, amongst others. Securing these pose a major 
challenge to organizations. 

Atamli & Martin23 were one of the first to identify possible attackers and attack vectors in IoT generic 
environments. In particular, they identified different sources of threats, viz: (I) malicious actors who 
own the IoT device willing to gain restricted role of the manufacturer; (ii) bad manufacturers, who 

                                                

22 https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet  

23 Atamli, A. W., & Martin, A. (2014, September). Threat-based security analysis for the internet of things. In Secure 
Internet of Things (SIoT), 2014 International Workshop on (pp. 35-43). IEEE. 

https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet
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have the ability to exploit the devices gaining information about users; or (iii) external adversaries 
that are not part of the system but are capable of exploiting it.  

In addition, Atamli and Martin presented different attack vectors for these systems including: device 
tampering, information disclosure, privacy breaches, (D)DoS (Denial of Service or Distributed Denial 
of Service) attacks, spoofing, or privilege escalation. All these possible attacks coming from the 
aforementioned sources can target several kinds of systems, depending on the particular 
environment, such as actuators, sensors, RFID tags, and Network (conventional, NFC(Near Field 
Communication), or the Web). 

Furthermore, OWASP IoT project24 offers a comprehensive list of vulnerabilities for different attack 
surface areas: 

                                                

24 https://www.owasp.org/index.php/IoT_Attack_Surface_Areas  

https://www.owasp.org/index.php/IoT_Attack_Surface_Areas
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Figure 8: A list of attack surface areas for different IoT ecosystems and scenarios 

 

These vulnerabilities offer a generic approach for IoT systems, and can be used to derive security 
properties, which will be studied afterwards. 
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4.2 Threats 

Using the three layer architecture described in section 2.1, we can discuss the security aspects of 
each layer separately. As every layer has different security concerns (described in the table below), 
we can focus on the most important problems at each layer separately. In the following table, we 
grouped the most common security concerns listed by OWASP. Although this is not a 
comprehensive list of possible vulnerabilities, covering these issues greatly improves the overall 
security of an IoT product.25  

Security concerns 
IoT Service 
Ecosystem 

Communicatio
ns Network 

Endpoint 
Ecosystem 

Insecure web interface X 
 

X 

Insufficient 
authentication/authorization 

X 
 

X 

Insecure network services X 
 

 

Lack of transport encryption 
 

X  

Privacy concerns X X X 

Insecure cloud/service interface X   

Insecure device interface  
 

X 

Insecure security configuration X X X 

Insecure software/firmware X 
 

X 

Poor physical security  X X 

Table 4: Security concerns for the different IoT layers 

4.2.1 Security of Endpoint Ecosystem 

The basis underlying an IoT network generally comprises of a variety of interconnected endpoint 
devices that acquire, process and exchange data. On this layer a number of technology-related 
challenges affect the security of the network and make the implementation of sophisticated security 
features difficult. These include, but are not limited to: 

• Heterogeneity: The IoT connects devices that may tremendously vary in terms of complexity 
and capabilities, may come from different vendors, and may have been designed for different 
overall functions. Also, a number of heterogeneous wireless technologies, such as WiFi, 
Bluetooth, Zigbee, GSM, etc., may be used to connect the devices. 

• Resource constraints: IoT devices are normally subject to technical constraints in terms of 
processing power, memory, power consumption, and cost, bearing negative implications on 
eventual security features. 

• Homogeneity: When deployed in batches, IoT devices may consist of similar or identical 
devices, with any security related vulnerabilities being common to all devices. 

• Deployment and updates: IoT devices may be deployed with an intended service life-time 
that is significantly longer than the life cycle normally anticipated for electronic devices. This 
can pose a substantial challenge to providing long-term support, for example when a device 
outlives its own manufacturer. Furthermore, the circumstances of deployment might allow 
reconfiguring or updating a device only with difficulties, or not at all. 

• Scalability: IoT devices can be deployed on a massive scale, and networks can consist of a 
large number of individual nodes. Any security measures that are applied in such networks 
must be appropriately scalable and take into account the potential quantity of interconnected 
links. 

                                                

25 https://www.owasp.org/index.php/IoT_Security_Guidance 
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Said technological factors pose a challenge when it comes to addressing multiple security-related 
threats and potential attacks that concern IoT endpoint devices. A selection of those will be briefly 
identified in the following and some hints on potential mitigation strategies will be given. 

Physical Capture or Tampering: IoT endpoint devices may be deployed in public or generally 
untrusted areas where the implementation of physical security is difficult or impossible and direct 
access to the device cannot be effectively restricted. The attacker may obtain full control over the 
captured device and the information stored on it. Among others, the following threat scenarios may 
arise: 

• Attackers may read and manipulate the internal memory and firmware of a device. This can 
be achieved by accessing debugging and programming interfaces that have been left 
enabled on the board (e.g. JTAG). A possible countermeasure would be to disable such 
interfaces before the deployment of the device. However, it may still be possible to unsolder 
certain parts of the device, such as flash memory chips, and access them independently of 
the rest of the system. Accessing a device’s memory and firmware also commonly facilitates 
reverse engineering which may enable the attacker to discover and exploit additional 
vulnerabilities. In addition, secrets and cryptographic material may be extracted from the 
device, which potentially enables the attacker to access communication infrastructure (e.g. 
WiFi) or web services provided for the IoT device. Here, the implementation of measures that 
physically protect the information on the device will be necessary. Examples of these include 
hardware-accelerated flash encryption, Trusted Platform Modules (TPMs) and storing 
secrets not directly in the device’s flash memory but securely using, among others, One-
Time-Programmable (OTP) fuses or Physically Unclonable Functions (PUFs). 

• Side channel attacks may enable the attacker to gain information about secrets that are 
stored or processed on the device without directly accessing its memory. This can be done 
by monitoring physical effects of the device, such as power consumption, electromagnetic 
radiation, and even sound, amongst others, which may let the attacker gain information about 
the data processed. Special algorithms that avoid the leakage of such information can be 
used as countermeasures to these attacks, and further physical shielding is required to 
ensure sufficient security. 

Attacks on Availability: Attacks on availability include any actions that are physically or logically 
applied to the IoT end node by a malicious party in order to make it stop working, the most prominent 
of which include Denial-of-Service (DoS), Distributed-Denial-of-Service (DDoS). Those will be 
discussed in more detail in the next subsection, which deals with network layer threats. Physical 
capture of a node may also compromise its availability at the attacker’s convenience. Another attack 
on availability that directly applies to IoT endpoint devices is the Sleep Deprivation Attack. As IoT 
endpoint devices usually have constraints on their desired power consumption or are battery-
powered, they potentially implement a power conserving sleep mode which they routinely enter. 
During a Sleep Deprivation attack the attacked device is interacted with in an apparently legitimate 
manner that, however aims to break scheduled sleep cycles or keep the device from entering them. 
This causes an excessive power consumption which can result in failure or shut down of the device.  

Eavesdropping/Interception/Hijacking: Most IoT devices communicate using wireless networks, 
with adversaries being able to eavesdrop and intercept the data transmitted. The peculiar aspects 
of IoT endpoint devices, such as constraints on processing power or memory, large-scale 
deployments and heterogeneous devices, however hinder the implementation of security features 
such as encryption and make key management difficult.  

• Data sniffing: Sniffing is usually used in network traffic context, however this method is not 
limited to this domain. Sniffing is also feasible on a hardware level, monitoring internal system 
buses and chip interconnections. These channels are assumed to be protected from the 
software developer perspective, since these are implemented in the hardware. 
Countermeasures against this kind of attack can include encrypted transmission on the 
sensitive channels, or using hardware components (BGA package, 4 layer PCB), where 
sniffing is unfeasible. 
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• Surveillance: Surveillance is a specific type of access to information that combines the basic 
information access with a focus on personal/private data and the use of hardware to gather 
information from the physical world, for example by (ab-)using microphones, cameras, or 
location data. Typical personal mobile computing environments comprise various sensors 
that can be abused to provide strong surveillance capabilities. 

• Data tampering/Spoofing: Comparable to surveillance threats, the tampering or spoofing 
of data on mobile computing devices can have wider impact than typical data tampering: 
Spoofed location, audio or visual data can lead to a variety of abuse scenarios. 

Access control: IoT devices often have to provide some kind of administration access. Depending 
on the IoT platform, this can be a physical connection, a specific network protocol, remote 
administration via a cloud platform, or a web interface via HTTP. In every case, proper authentication 
and authorization is necessary to prevent threats such as private data leakage and unauthorized 
modification of settings. 

Web interface security: Web administration interfaces are tending to be common in IoT devices, 
especially for complex ones such as routers, IP-cameras, but even in thermostats26. Any web 
interface may contain common web vulnerabilities (see the OWASP top ten27 for most critical web 
application security risks). Since IoT devices have limited resources, most of the code handling 
HTTP requests, including the web server and the application logic, are written in low-level languages. 
Therefore classic security issues, such as buffer overflow28, integer overflow, command injection [5], 
and even format string29 vulnerabilities may be present in the IoT device. 

Attacks against sensors: The behaviour of an IoT device depends on the data collected from the 
physical world by the various sensors. If the sensor data is faked or spoofed somehow, the IoT 
system will make wrong decision based on the modified data.  

• In some special cases, e.g. activity trackers, a malicious user (owner) of the device might 
want to fake sensor data to gain financial advantages from it, for example by saving from 
insurance or gaining rewards30 based on the collected data. 

• To influence sensor data the attacker needs physical access to the sensor. Since sensors 
have to collect data from the physical world, attackers generally have a chance to access 
them. Moreover, some sensors can be influenced from distance also. For example, Trippel 
et al. [2] demonstrated an attack against accelerometers with acoustic injection. They could 
inject faked sensor data with acoustic waves to accelerometers from 5 different 
manufacturers. A similar attack was shown by Zhang et al. [3] by sending inaudible voice 
commands to a speech recognition system. Besides acoustic waves, electromagnetic 
interferences can cause false sensor data, as shown by Park et al. [4] for medical devices. 

4.2.2 Security of the Network Layer 

The purpose of this layer is to transmit data between the end nodes inside an IoT network. These 
connections can be between two devices, between the device and a server, or between the device 
and the user (user’s PC or mobile phone). There are some specific challenges that have to be 
addressed in the scope of the IoT, particularly in case of low-resource devices, and that have an 
impact on the overall security of the whole network. These challenges include:  

• Network energy efficiency (UDP protocol is favoured over TCP) 

• Low bandwidth network 

                                                

26 https://blog.newskysecurity.com/iot-thermostat-bug-allows-hackers-to-turn-up-the-heat-948e554e5e8b 
27 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project 
28 https://courk.fr/index.php/2017/09/10/reverse-engineering-exploitation-connected-
clock/#Bluetooth_Communications_Reverse_Engineering 
29 http://defensecode.com/whitepapers/From_Zero_To_ZeroDay_Network_Devices_Exploitation.txt 
30 https://www.tomsguide.com/us/fitness-trackers-insurance,news-23053.html 
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• Network outages 

To achieve a secure IoT system, the following threats should be addressed in the scope of network 
layer: 

Eavesdropping/Interception/Hijacking: Most IoT devices communicate using wireless networks, 
which are vulnerable against adversaries, who are capable of intercepting the data transmission. For 
this purpose, it is important to provide secure communication channels between the parties to ensure 
data confidentiality. However, the keys which are used for encryption must be secured as well, since 
if these keys are compromised, the security of these channels cannot be granted. Even in case of 
low-resource devices, the encryption should rely on public key cryptography or derived keys from 
configurable secrets, otherwise the attacker will be able to obtain the encryption key and eavesdrop 
the communication, such as in the case of Linx light bulbs31. 

Spoofing of Identity and Data: During network spoofing, an attacker masquerades network 
information (IP, MAC address etc.) in order to gain illegitimate advantage on a given network. This 
type of threat includes the following attacks: 

• ARP poisoning: The attack is achieved when an attacker poisons the ARP cache of two 
devices with the (48-bit) MAC address of their Ethernet NIC (Network Interface Card). Once 
the ARP cache has been successfully poisoned, each of the victim devices sends all their 
packets to the attacker when trying to communicate to the other device32. This kind of attack 
opens up for other malicious activity, like MITM or session hijacking attack initiated from the 
same network. 

• DNS cache poisoning: The DNS server translates domain names into IP addresses. With 
DNS cache poisoning the attacker wants to redirect users from a specific domain to an 
attacker’s controlled one. To perform the cache poisoning attack, the address record of the 
attacker’s domain contains information related to the target domain, which may be cached 
by the DNS server. 

• IP address spoofing: The attacker may want to use forged IP address to impersonate other 
system or perform Denial-of-Service type attacks. The attack can be performed easily by 
overwriting the source address in an IP packet; however it has different effects with different 
protocols. For example, in case of the UDP protocol, the attacker can send data with spoofed 
address, but won’t receive the answer. But in case of the TCP protocol, which requires a 
simple handshake, the modified source address can be used only to cause DoS attacks. 

Countermeasures against identity and data spoofing can involve different authentication methods, 
where trust is given based on the unique identifier of the device or the usage of public key 
cryptography, e.g. in the case of TLS/SSL or DTLS.  

Attacks on sensor network routing: A lot of attack potential arises with the custom communication 
protocols introduced in the IoT network. General ad-hoc routing protocols are often susceptible to 
different kinds of attack. When an IoT network is designed, it is recommended to choose an 
appropriate network protocol to prevent this kind of attack. The following attacks are the most 
common against sensor networks according to Raymond et al. [6] and Karlof et al. [7]:  

• Spoofed, altered, or replayed routing information: The most direct attack against a 
routing protocol is to target the routing information exchanged between nodes. By spoofing, 
altering, or replaying routing information, adversaries may be able to create routing loops, 
attract or repel network traffic, extend or shorten source routes, generate false error 
messages, partition the network, increase end-to-end latency, etc. 

• Selective forwarding: Multi-hop networks are often based on the assumption that 
participating nodes will faithfully forward messages received. In a selective forwarding attack, 

                                                

31 https://www.contextis.com/blog/hacking-into-internet-connected-light-bulbs 
32https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-
switches/white_paper_c11_603839.html 
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malicious nodes may refuse to forward certain messages and simply drop them, ensuring 
that they are not propagated any further. A simple form of this attack is when a malicious 
node behaves like a black hole and refuses to forward every packet she sees. However, such 
an attacker runs the risk of neighboring nodes concluding that she has failed and deciding to 
seek another route. A more subtle form of attack is to selectively forwards packets. An 
adversary interested in suppressing or modifying packets originating from a few select nodes 
can reliably forward the remaining traffic and thus limit suspicion of her wrongdoing. 

• Sinkhole attacks: In a sinkhole attack, the adversary’s goal is to lure nearly all the traffic 
from a particular area through a compromised node, creating a metaphorical sinkhole with 
the adversary at the center. Because nodes on, or near, the path that packets follow have 
many opportunities to tamper with application data, sinkhole attacks can enable many other 
attacks (selective forwarding, for example). 

• Sybil attacks: In a Sybil attack, a single node presents multiple identities to other nodes in 
the network. Any system whose correct behavior is based on the assumption that most nodes 
will behave properly may be at risk for Sybil attacks. In a scenario, where the system behavior 
is based on some form of voting system between the network nodes, an attacker with 
sufficient identities can manipulate the end result of such a scheme. The Sybil attack is 
especially threatening to fault-tolerant schemes such as distributed storage, dispersity and 
multipath routing, and topology maintenance  

• Wormholes: In the wormhole attack, an adversary tunnels messages received in one part 
of the network over a low latency link and replays them in a different part. The simplest 
instance of this attack is a single node situated between two other nodes forwarding 
messages between the two of them. However, wormhole attacks will more commonly involve 
two distant malicious nodes colluding to understate their distance from each other by relaying 
packets along a channel available only to the attacker 

• HELLO flood attacks: Many protocols require nodes to broadcast HELLO packets to 
announce themselves to their neighbors, and a node receiving such a packet may assume 
that it is within the (normal) radio range of the sender. This assumption may be false: a laptop-
class attacker broadcasting routing or other information with large enough transmission 
power could convince every node in the network that the adversary was its neighbor, allowing 
the attacker to execute more sophisticated attacks. With proper protocol rules, this attack can 
be avoided. 

• Acknowledgement spoofing: Several sensor network routing algorithms rely on implicit or 
explicit link layer acknowledgements. Due to the inherent broadcast medium, an adversary 
can spoof link layer acknowledgments for “overheard” packets addressed to neighboring 
nodes. Goals include convincing the sender that a weak link is strong or that a dead or 
disabled node is alive. 

• Jamming: Jamming is defined as the act of intentionally directing electromagnetic energy 
towards a communication system to disrupt or prevent signal transmission [8]. Jamming 
attacks can be viewed as a kind of DoS attacks, which pose a threat to WSN (Wireless 
Sensor Network) even with strong security mechanism, simply by targeting the physical 
channels of the communication. 

4.2.3 Security of Service layer 

Most of the threats discussed here are not so different from any other server-side application. In 
most of the cases, these servers have web access, which without proper countermeasure pose a 
huge security risk for the server. The possible attack methods include code injection, session 
hijacking, arbitrary code execution etc.  

Denial of Service: This threat is similar as in the other layers, but in this case making the server 
unavailable often makes the functioning of the IoT system impossible. As another source of concern, 
if a portion of the IoT devices are compromised, these can be used as part of a DDoS attack. 
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Privacy threats: In the case of IoT, a lot of data is collected about the user. This data can be 
processed on the end nodes, but in most of the cases it is collected on a central server. This data 
can be stored anonymously to avoid privacy leakage. However in some cases, the identity can be 
restored from this partial information as well [9].  

API abuse: An Application Programming Interface (API) is a set of clearly defined methods of 
communication between software components33. APIs are regularly used by cloud service providers 
to allow access to their system. An example for the API abuse threat is the path traversal attack, 
where the attacker can access unauthorized files outside the restricted directory through using 
relative paths.  

Unauthorized access: An attacker can exploit web vulnerabilities or server misconfigurations to 
access to the related services or sensitive data without proper authorization. In case of a typical IoT 
ecosystem, unauthorized access may provide access not only to the server functionality, but to the 
IoT device also. 

Code execution: Code execution caused by an exploitable vulnerability in the server or the 
application layer code enables the attacker to access or modify all data and even the code executed 
by the server. 

 

4.3 Security requirements for IoT 

For specifying the requirements for IoT, we followed the same layered approach that we used in the 
threat examination. With this approach, we can separate the layers from each other, which is often 
the case in the real world scenarios, where the device vendor is separate from the network provider.  

We give an overview of the most important security requirements in the scope of IoT. Instead of 
setting a complete requirement list, we tried to give a list of the most important requirements 
concerning the IoT. To achieve this, we set high level functional goals, and set other sub 
requirements to achieve the desired functionality.  

4.3.1 Requirements for Endpoint Ecosystem 

Implement secure TCB 

To ensure endpoint security it is inevitable to implement some kind of Trusted Computing Base 
(TCB). From the Orange Book [10], TCB is the totality of protection mechanisms within it, including 
hardware, firmware, and software, the combination of which is responsible for enforcing a computer 
security policy. Any bugs and vulnerabilities occurring inside the TCB means a potential threat to the 
entire system. Systems that don't have a trusted computing base as part of their design do not 
provide security of their own: they are only secure insofar as security is provided to them by external 
means (e.g. a computer sitting in a locked room without a network connection may be considered 
secure depending on the policy, regardless of the software it runs)34. The TCB can be an internal 
part of the CPU, or a separate hardware element, such as SIM card, UICC or other kind of HSM 
(Hardware Security Module). Since the overall security depends on the security of the TCB, it is 
important to implement additional protection against additional threats such as power analysis and 
glitching attacks, or reverse engineering and microprobing attacks. In addition to the aforementioned 
functionalities, the following functionalities can be implemented using the TCB to achieve additional 
protection: 

• Endpoint application image validation 

• Network authentication and/or peer authentication 

• A separation of duties 

                                                

33 https://en.wikipedia.org/wiki/Application_programming_interface 
34 https://en.wikipedia.org/wiki/Trusted_computing_base 
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• Provisioning and personalization 

• Isolated environment (connectionless site) provisioning and communication 

• Cryptographically secure randomization 

Implement secure Endpoint Identity and Authentication 

In order to prevent cloning of an IoT device, the device must be capable to prove that it is 
manufactured by the IoT service provider. In order to do this, the endpoint is required to incorporate 
a trust anchor into the TCB. To enhance security, the endpoint can utilize personalised cryptographic 
keys, in order to minimize the impact of a compromised trust anchor. Another form of a trust anchor 
is using HSM as an application layer trust anchor, which over secure key storage can provide other 
crypto-processing functionalities. 

Implement secure Firmware and software against tampering 

In order to prevent tampering of executable code on the endpoint, it is recommended to implement 
a Minimal Viable execution Platform (MVeP. This platform is capable of configuring peripherals, 
authenticate code snippets, which will be executed by the CPU, and manages software updates. 
This way, a minimal bootloader can be defined, which can check cryptographically signed application 
images, ensuring that the image is from a trusted source. In order to further increase security, 
security critical code such as the first stage bootloader or the TCB should be stored in read-only 
memory. 

Implement secure communication between services and Endpoints 

In an IoT network, not only the Endpoints must be authenticated by the services, but the services 
must also be authenticated by the Endpoints, so critical services, such as application updates, 
cannot be subverted. Although clear text messages between the Endpoint devices are not strictly 
prohibited, it has to be ensured that communication channels with privacy data, commands or system 
critical messages are secured. For this purpose, the Endpoint has to be capable of authenticate 
another endpoint, encrypt/decrypt critical data and check integrity of a message. 

Consumer privacy requirements 

Since the IoT devices have the ability to interact with their environments, this raises a lot of security 
concern in the field of what data should be handled, and how. It is also important to inform the user 
properly about what data is collected, and give him the ability to decide whether he wants to expose 
this data to third parties. This is not limited only to personal data, since many endpoint specific data 
can be used as a fingerprint (BLE, Wi-fi, cellular address etc.) to track down a user, if the malicious 
actor can link these data with the actual user. 

Use exploit mitigation and hardening techniques 

Similar to any other computer system, IoT devices may contain exploitable vulnerabilities. The 
possibility of a vulnerability can be decreased, but it cannot be avoided completely. So, the IoT 
device should implement any possible mitigation and hardening techniques, which is possible. In 
some case, especially the low-power devices executing a Real-Time OS cannot support all of the 
following exploit mitigation and hardening techniques. 

• Enforce memory protection with implementation of Data Execution Prevention (DEP) and 
Address Space Layout Randomization (ASLR) techniques. 

• Use internal memory for secrets and delete them if the secret is not used anymore. 

• Run applications with least privilege levels necessary. 

• Use buffer overflow protection measures, such as stack canaries. 

• Enforce operating system level security enhancements. 

• Minimize hardware and logical access and remove any unnecessary debug port or logical 
access.  

• Use secure default configurations with particular regard to enforced authentication, 
supported strong authentication mechanisms, use of encryption features (see also Crypto) 
and reliable authorization components. 
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4.3.2 Requirements for Network Layer 

When it comes to designing the communications architecture of an IoT system, there is one pitfall 
that is the root of most issues – using custom cryptography, or no cryptography at all. As in any 
reasonably complex architecture the network layer encompasses several layers of third party 
infrastructure, it opens up an enormous attack surface if left unsecured. Designing and implementing 
protocols that can stand the test of time against attackers is no small feat – and as industry standards 
have already been established, implemented and tested, it should not be attempted at all. 

By far the most widely deployed solution for securing the communications between two parties is 
Transport Layer Security (TLS). This protocol and its assurances have been extensively 
documented, reviewed and updated, as necessary to create the current version (1.2) of the protocol. 
While TLS is based on TCP, Datagram Transport Layer Security (DTLS) has also been defined for 
applications that require UDP based communication. Both protocols have publicly available, open-
source implementations, even for embedded systems, and most common operating systems support 
them out of the box. These implementations are subject of significant public scrutiny, and as such 
should be preferred over any custom solutions. TLS and DTLS should be used to secure all 
communications. 

TLS has a plethora of configuration options, and some configurations are more secure than others. 
As of version 1.2 of the standard, these best practices should be followed: 

• Only allow connections using version 1.2 of the standard – neither the server nor the client 
should permit earlier versions. 

• Only allow cipher suites that: 
o Provide forward secrecy – even if the private keys used by the client or the server 

leak, previously sent data will remain undecipherable to third parties. 
o Use AES for encryption – earlier algorithms, such as DES or RC4, have known 

weaknesses that may undermine the security of the whole protocol. 
o Use at least SHA256 for data integrity – earlier algorithms, such as MD5 or SHA1, 

have known weaknesses that may undermine the security of the whole protocol. 

• Some cipher suites may use Elliptic Curve Cryptography (ECC) for key exchange – 
whether this is desirable depends on performance requirements and available hardware 
acceleration.  

• The performance overhead of 256 bit AES over 128 bit AES is usually not worth the rather 
small increase in security. 

While it is out of the scope of this document to examine all available cipher suites, the following two 
match these requirements: 

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 

• TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 

Since TLS depends on a Public Key Infrastructure (PKI), another issue that should be addressed is 
generating certificates and establishing trust between devices. Without a well-designed PKI, the 
protections of TLS can be easily defeated. While TLS can be used without authenticating the other 
party or only performing authentication of the server by the client, this is discouraged. Mutual 
authentication is recommended to be used for all communications. 

A guide for establishing the PKI is out of the scope of this document, but the following best practices 
should nonetheless be followed: 

• Private keys should be generated on device, preferably stored in a hardware security enclave 
– or if unavailable, in a software enclave provided by the operating system.  

• Private keys should be at least 3072 bits (RSA/DSA) or 256 bits (ECC) long. Shorter keys – 
2048 bits (RSA/DSA) or 224 bits (ECC) – can be used on performance-constrained devices. 
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• Have clear policies for signing Certificate Signing Requests (CSRs) when deploying 
hardware or software. Ensure that only authorized personnel can perform such an operation 
and that all signatures can be audited. 

• Certificates should use at least SHA256 as their hash algorithm, and should be clearly 
identified by their metadata. 

• The chain should have at least one layer of intermediate certificates. The private key 
belonging to the root certificate should be only used on an offline machine to sign 
intermediary certificates. 

• Certificate Revocation Lists (CRLs) should be maintained and checked against on each 
connection. Certificates suspected of compromise should be revoked and reissued. 

• On device redeployment existing certificates should be revoked and new certificates should 
be issued.  

• Have clear policies in place for updating certificates – avoid using certificates that cannot be 
updated on embedded devices. 

• Only include trusted root certificates in the trust store of individual devices. Ensure that the 
trust store can be updated when needed. 

• Have separate chains of trust for certificates that have no way to expire or cannot be validated 
against a CRL – for bootloaders or code signatures, for example. Treat the private keys 
associated with these certificates with extreme care, use them only in offline environments 
and set up strict physical access controls.  

While this list is by no means complete, a PKI set up using these guidelines combined with the latest 
version of TLS can ensure the confidentiality and integrity of all communications. To help ensure the 
availability of the system, and to further increase its resilience against different attacks, a number of 
additional tools and measures can be used on the network level: 

• Firewalls should be used on the edge network to monitor and filter incoming and outgoing 
network traffic. Network layer firewalls allow packets to pass through based on a predefined 
set of rules, such as the IP address or port of the source or destination. More complex 
firewalls might have additional services, such as: 

o Deep Packet Inspection (DPI) – examines the data part of a packet, searching for 
protocol non-compliance, viruses, spam or other malicious content. It may allow a 
packet to pass, may redirect it to a different destination, or may reject it altogether. 

o Intrusion Detection System (IDS) – monitors the network for malicious activity or 
policy violations. It matches traffic to a library of known attacks. Once an attack is 
identified, or abnormal behavior is detected, an alert can be sent to the administrator 
or automatic action can be taken. 

• ARP whitelisting should be used to ensure that attackers cannot exploit the lack of 
authentication in the ARP protocol. It is done by software that relies on some form of 
certification or cross-checking of ARP responses. This way, uncertified ARP responses are 
blocked, preventing ARP spoofing attacks. 

• DNSSec (Domain Name System Security Extensions) should be used to protect the 
integrity of DNS data used by applications - such as DNS data forged or manipulated by DNS 
cache poisoning – by ensuring that all answers from the DNSSEC protected zones are 
digitally signed. 

• TCP/IP cookies (also referred to as SYN cookies) should be turned on to prevent SYN flood 
attacks. This technique allows a server to drop connections in case the SYN queue fills up - 
after sending back an appropriate SYN+ACK response to the client - and enables it to 
reconstruct the connection after it gets a valid ACK response from the client. 

• Router level filtering should be used to ensure that the private address space does not leak 
out into the global internet and to filter incoming network traffic as a protection against DoS 
attacks.   

• VPN (Virtual Private Networks) should be used to provide confidentiality in such a way that 
even if the network traffic is sniffed at the packet level, an attacker would only see encrypted 
data. As opposed to consumer VPNs, the objective is not to make online connections 
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anonymous, but to increase privacy and security by adding an additional layer of encryption 
and authentication to all protocols running on the network. Even if all communications are 
otherwise encrypted using TLS, a VPN tunnel can add additional security by encrypting the 
headers and service packets of lower level protocols. 

• Centralized logging should be deployed to log all security incidents and possible malicious 
behavior that has been identified for later audit. While logging all events might be a serious 
performance burden, at the least failures and errors should be logged. 

4.3.3 Requirements for Service Ecosystem 

Implement Service TCB 

Implementing a TCB is important on every platform to guarantee security, however depending on 
the on the system, it can have different characteristics. In the service ecosystem, this can be 
achieved through application images, which are deployed on the servers. These images contain all 
of the information, which are required to a server to function properly, including executable files, 
configuration files, and other metadata. This method is also useful for more flexible functioning of 
the service, since servers can be deployed dynamically depending on demand. 

To achieve this, the service provider has to standardize hardware and software, and to configure it 
according to the needs. To ensure that the image is not tampered with malicious entities, the image 
must be signed, and an Organisational Root of Trust is required, which ensures that the images are 
signed properly. The Organisational root of trust can be a form of HSM and it can have additional 
functionalities, like authenticating other parties within the ecosystem. 

To have a trustworthy system, the following additional countermeasures should be considered: 

• each secret must be protected from abuse 

• internal use of each secret must be verifiably tracked and monitored, 

• each individual approved to utilize a secret must use multi-factor authentication when 
accessing the secret(s), 

• define a set of policies and procedures that enforce consistent and secure usage, 

• build a process to sunset or revoke a certificate, 

• identify whether a key has been abused and 

• choose the correct set of cryptographic algorithms. 

User authentication 

Authenticating a user through an endpoint relies on both the trustworthiness of the endpoint and the 
communication channel between the service and the endpoint. Since the user is independent from 
the device endpoint, user credentials should be managed separately from the endpoint. During 
implementing user authentication, the following should be considered: 

• Enforce strong password policy: The authentication system should enforce strong password 
policy, which instead of being complex (numbers + special characters) should be long 
enough to prevent brute force attacks. To prevent brute forcing, the service provider should 
limit the threshold for the total number of attempts, increase the minimum required time 
between the guesses or use captcha to prevent automatic trials. 

• Force authentication through the Service Ecosystem: If it is possible, avoid user 
authentication on the field, since it is easier to bypass authentication on the endpoint. Instead, 
use the secured service channels, and API for this purpose. 

• Separate storage systems for duties: If the application layer of the service is compromised 
through SQL injection or other attack methods, the service provider can prevent privilege 
escalation through physically separating the systems. 

• Consider using Network Authentication Services: Network Operators authenticate the 
endpoint on the network layer. Since a lot of network operators enforce network-based 
authentication, if these tokens provide meaningful security, they can be reused for application 
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level authentication, so the service provider don’t have to maintain its own secure store 
technology. 

Requirements to improve availability 

Denial of service attacks are common on the internet, and pose a major threat to the service 
ecosystem. To avoid this kind of threats several countermeasure techniques can be applied. 

• Harden systems exposed the Public Internet: Use DDoS resistant, load balancing 
infrastructure, which contains redundancy systems and firewalls. 

• Systems Logging and Monitoring Approach: Each system must be monitored in order to 
detect anomalies. 

• Define a Recovery Model: In case of security compromise, the system must be able to 
revert back to a safe version. 

Countermeasures against endpoint compromising 

• Define secure boot process: the service during boot should be able to authenticate itself to 
external endpoints, acquire identity etc. 

• Define a Persistent Storage Model: a lot of cloud based service do not implement persistent 
storage model, since the resources are allocated on demand. However if the service provider 
needs persistent storage for its services it should be designed in a way, that in an event of a 
compromising, the attacker can’t access other user’s data. 

• Administration: To troubleshoot and diagnose application faults, some kind of 
administration model should be implemented. To achieve this, system changes should be 
tracked, and two factor authentications should be considered to enhance security. 

Countermeasures against anomalous endpoint behaviour 

For the overall health of the service ecosystem, it is important to determine anomalously behaving 
endpoints, to protect the services from further compromising. Since it is not usually possible to 
completely exclude every source of malicious activity (environmental factors, social engineering), it 
is recommended to equip the services with extra protections against these threats. The following 
techniques can be implemented to enhance security: 

• Input validation: one of the easiest routes of attack for an adversary is to abuse the data 
originating from the endpoint, resulting in unwanted behaviour in the service system. For this 
purpose, it is important to check the incoming information for malicious parts. 

• Implement output filtering: complementing the Input validation, data leaving the services 
should be also filtered against malicious code or to prevent the exposure of confidential data. 

• Intruder detection system: in order to detect malicious activity, the service should be 
capable to monitor its own network against malicious activity. Honeypot mechanism can be 
implemented in order to detect and deflect unauthorized users within the system. 

• Incident response model: During a security breach, it is important to the service provider 
to react quickly to external attacks, which involve cleansing or completely shutting down 
services, detect the source of compromise, restart and patch systems on the whole 
infrastructure.  
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Chapter 5 Risk assessment techniques 

 As has been stated in previous chapters, the rapid growth and interconnectedness of the IoT 
gives rise to a multiplicity of security-related risks and the proper identification of exposures makes 
a solid risk assessment a necessity. This chapter therefore aims to provide an outline of the principal 
process involved as well as a discussion on different risk assessment tools and their mutual 
relevance in context of VESSEDIA. Two major standards for risk assessment, ISO/IEC 31010:2009 
and NIST Special Publication 800-30 are briefly outlined and compared. Then we present different 
risk assessment techniques based on the ISO/IEC 31010:2009 standard. We give key 
considerations on those techniques as well as relevant characteristics of the techniques in the 
context of software safety and security verification tools. 

 

5.1 Risk assessment for IoT applications 

Organizations and enterprises regardless of their nature pursue a certain set of objectives and 
expend effort towards reaching those objectives. The achievement of the latter can be affected by 
what will be subsequently referred to as “risk”.  

ISO 31000, which is used as a reference within ISO/IEC 31010:2009, defines risk as the “effect of 
uncertainty on objectives”, with the effect being a “deviation from the expected – positive or 
negative”, and can be described as a deficiency in information regarding potential events and their 
consequences.35 36 

It is important to note, that the consequences of risk as referred to above, can be positive as well as 
negative, being able to enhance as well as to diminish the achievement of an objective.  

NIST Special Publication 800-30 [11], on the other hand, refers to risk in a more specific way by 
stating that risk is a “measure of the extent to which an entity is threatened by a potential 
circumstance or event”, with the consequences of potential events being “adverse impacts”. Here, 
“risk” bears an inherently negative meaning.  

Similarly, NIST SP 800-30 also employs a different and more complex terminology when it comes to 
potential events, labelling them “threats”, which more specifically decompose into several different 
factors. For sake of brevity only the most important terms will be presented here; their meaning and 
relation to each other are briefly summarized in the following: 

• Predisposing condition – a condition that in- or decreases the likelihood that threat events 
result in adverse impact (e.g. a facility being located in a flood-prone region or not) 

• Vulnerability – a weakness in an information system that could be exploited by a threat source 
in the context of a predisposing condition 

• Threat source - an intent, situation or method that deliberately or accidentally exploits a 
vulnerability 

• Threat event – an event or situation that potentially causes adverse impact and is in turn 
caused or initiated by a threat source 

The magnitude of risk, which is called the “level of risk” in either standard, is a function of the 
consequences or impact of an event as well as the likelihood of an event to occur, and the 
determination of both factors is an integral part of the respective risk assessment processes. Within 
NIST the term likelihood can be further decomposed into the likelihood that a threat event will be 
initiated and the likelihood of impact. 

                                                

35 https://www.iso.org/iso-31000-risk-management.html  
36 https://www.iso.org/standard/51073.html  

https://www.iso.org/iso-31000-risk-management.html
https://www.iso.org/standard/51073.html
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The risk assessment itself is a structured process that serves the following main purposes: 

• identifying, analysing and evaluating risks to an organizations objectives and 

• providing evidence-based information to make informed decisions on how to treat particular 
risks. 

The process of risk assessment as given in ISO 31010:2009 as well as in NIST SP 800-30 are 
procedurally similar and consist of the following principal steps: 

• preparation for the risk assessment and establishing a context, 

• conducting the actual risk assessment and 

• exploiting the results. 

Generally, the purpose of the first step is to establish a context for the assessment by identifying its 
purpose and scope, assumptions made, as well as the sources of information that is used as input 
for the assessment, among others. 

In ISO/IEC 31010:2009, the actual risk assessment process comprises of the following main 
activities: 

• Risk identification: find, recognize and describe risks, including risk sources, events, their 
causes and potential consequences. 

• Risk analysis: understand the nature of a risk and determine its level of risk. 

• Risk evaluation: determine if a risk is acceptable or tolerable to the organization or not and 
decide which risks need treatment. 

The process given in NIST SP 800-30 is very similar in structure and provides a more fine grained 
description of the process that corresponds to its more specific terminology. 

The concluding step of the process focuses on exploiting the acquired knowledge and findings of 
the risk assessment process. Within NIST SP 800-30 instructs to communicate the risk assessment 
results and to share information developed in the execution of the risk assessment, in order to 
support other risk management activities. ISO/IEC 31010:2009 specifically implements a step called 
“risk treatment”, in which options for changing the likelihood or impact of a risk are selected and 
agreed to. 

In addition, communication and review of information involved is maintained continuously during the 
course of the assessment. 

Both risk assessment methodologies are compared in the figures below. 

 

Figure 9: ISO/IEC 31010:2009 risk assessment 
process 

 

Figure 10: NIST SP 800-30 risk assessment 
process 

ISO/IEC 31010:2009 as well as NIST SP 800-30 are both accepted as industry standards and aim 
at organizations of all types and sizes. While ISO/IEC 31010:2009 is an international standard, NIST 
SP 800-30 is the preferred risk assessment methodology of the US government and is thus heavily 
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US-focused and mostly aimed at the US public sector. However, NIST SP 800-30 is designed to be 
consistent with ISO standards and adequate with flexibility in mind, so that it can be used with other 
frameworks. As stated before, in contrast to ISO/IEC 31010:2009, NIST SP 800-30 also is more 
specifically focused on information security, while the former is kept more broad and generic. 37 

ISO/IEC 31010:2009 also provides an overview of various risk assessment techniques, which will 
be discussed in the subsequent section. 

 

5.2 Risk assessment methods (based on ISO/IEC 31010:2009) 

5.2.1 Introduction 

This section discusses different risk assessment techniques/tools and their relevance in context of VESSEDIA. 
One of the VESSEDIA methodology’s objectives is to offer a versatile and cost effective approach 
for certifying the use of security and safety verification tools during the software development 
lifecycle. The label “Verified in Europe” itself will provide added-value to system designers by 
documenting which toolset has been applied for verification. 

In relation with the objectives described in the DoA, we consider a wider range of risk assessment 
techniques than the techniques of HazOP, Delphi, SWOT and FMEA, as they were stated in the 
DoA. Risk assessment is critical in order to understand the mechanisms behind the vulnerabilities, 
and increase safety as well as the security of connected applications and devices against risks, 
especially with regards to IoT systems. 

Risks assessment techniques allow thorough risk appraisal, and help demonstrating the benefits of 
using the VESSEDIA methodology on connected applications, where improvements in verification 
lead to safer and more secure IoT environments. It is important to note that the above mentioned 
“Verified in Europe” label aims at supporting the IoT community stakeholders’ efforts and building 
users’ trust in IoT devices. 

Various methods may be chosen to perform a risk assessment. While risk assessment lacks of 
consensus (for example in cloud computing38), we decided to consider the use of different 
techniques/tools and discuss their relevance if integrated to the VESSEDIA approach. 

The tools are presented following the ISO/IEC 31010:2009 process of risk identification, risk analysis 
and risk evaluation. For each technique or set of techniques sharing similarities, we present key 
considerations and some information about their relevance in the context of safety and security 
verification tools: 

  

                                                

37 https://www.ncsc.gov.uk/guidance/summary-risk-methods-and-frameworks  
38https://www.isaca.org/Journal/archives/2012/Volume-5/Pages/Cloud-Risk-10-Principles-and-a-Framework-for-
Assessment.aspx 

https://www.ncsc.gov.uk/guidance/summary-risk-methods-and-frameworks
https://www.isaca.org/Journal/archives/2012/Volume-5/Pages/Cloud-Risk-10-Principles-and-a-Framework-for-Assessment.aspx
https://www.isaca.org/Journal/archives/2012/Volume-5/Pages/Cloud-Risk-10-Principles-and-a-Framework-for-Assessment.aspx
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5.2.2 Risk identification tools 

Risk identification is defined as the “process of finding, recognizing and recording risks” (ISO/IEC 
31010:2009). Among the techniques considered “strongly applicable” for the purpose of risk 
identification, we have selected the following: 

Technique Key considerations Relevance in the context of 
safety and security 
verification tools 

Check-lists This “look-up” method lists 
typical uncertainties. It is 
simple, and low resource 
consuming. 

Available standards (e.g. ISO) 
and metrics allow to use well 
established listings for checking 
uncertainties on well-defined 
targets of verification. 

Scenario analysis Imagining future scenarios 
offers insight into possible 
outcomes. searching 
comprehensively for the 
sources of problems.   

Those techniques bring insight 
on possible occurrences, for 
example when considering the 
quality in use of a given 
software (e.g. when embedded 
on an operating IoT hardware). 
Scenario analysis is very 
relevant towards environments 
characterized by technological 
changes (IoT). 

Cause-and-effect analysis Investigation of the 
contributory factors to an 
effect.  

Failure mode effect analysis 
(FMEA and FMECA) 

FMEA is applicable for both 
system, service and software 
risk identification. It can be 
extended to consider criticality 
(FMECA). 

The method can tackle issues 
ranging from design 
alternatives dependability to 
human errors identification. 

Brainstorming Those techniques are rather 
supportive to the above 
techniques through gathering 
opinions and finding 
consensus 

Involve stakeholders (e.g. user, 
software developer, validator, 
certification body, hackers) in 
identifying new sources of risks 
given the versatility, volatility 
and innovative nature of IoT 
environments. 

Delphi 

SWIFT-structured 

 

5.2.3 Risk analysis 

The risk analysis phase is split in three distinct steps that are firstly the consequence analysis, 
secondly the likelihood analysis and finally, through combination of those, the determination of the 
level of risk. For simplicity and for narrowing down the range of available techniques for risk analysis, 
we have ruled out techniques which were not characterized as “strongly applicable”, leading to the 
selection that follows: 



D1.1 - Security requirements for connected medium security-critical applications   

VESSEDIA D1.1 Page 41 of 58 

Technique Key considerations Relevance in the context of 
safety and security 
verification tools 

Root cause analysis Is a type of scenario analysis, 
with the gathering a team, of 
the evidences on a failure or 
loss and through performing a 
structured analysis. 

For verification purpose, there 
is a lot to learn from failure 
situations. This is especially 
true in context of complex 
systems such as IoT 
environments. The resulting 
documentation will prove 
useful for the community 
stakeholders in the future (e.g. 
validators, and certification 
bodies). Technological 
innovations may void learning 
from the past, and there it is 
relevant to continuously 
monitor the actual roots of new 
failures. Resource 
consumption and complexity 
are medium while providing 
deep insight. 

Failure mode effect analysis 
(FMEA and FMECA) 

The technique offers insight on 
failure modes and 
mechanisms as well as their 
effects. 

This method is particularly 
interesting in that it can be 
applied along the software 
development life-cycle and 
adaptable to requirements in 
terms of verification efforts (i.e. 
VESSEDIA intends to create 
levels of applied tool 
capabilities). The method can 
provide both qualitative and 
quantitative inputs to other 
analyses techniques such as 
fault tree analysis. 

Human reliability analysis 
(HRA) 

As a supporting method, HRA 
considers humans’ impact on 
the system performance. 

As far as security matters, 
attack scenario give attention 
to attacker behaviors. On the 
other hand, much of safety 
issues will imply consideration 
on the misuse or mistakes 
done by users when interacting 
with the software/system and 
throughout its lifecycle. 
Damages to users and their 
surroundings are potentially 
critical in IoT environments. 
Operators and maintenance 
personnel can also be 
considered for treatment 
efforts. 
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Technique Key considerations Relevance in the context of 
safety and security 
verification tools 

Reliability centred 
maintenance (RCM) 

An industry spread method 
which is applicable throughout 
the whole risk assessment 
process. RCM identifies 
policies to implement for 
managing failures while 
efficiently reaching safety, 
availability and economic 
objectives. 

The method is critically 
relevant to the maintenance 
stages of the verification 
process as described in D6.4. 

Consequence/probability 
matrix 

Coupling consequence and 
likelihood scales in a matrix 
table to produce a risk rating or 
risk levels. 

Easy to use, the interpretation 
can be biased due to ambiguity 
and limited due to subjectivity. 
However, it can help for 
sharing understanding 
between 
stakeholders/members of the 
community about the impact of 
enhanced verification efforts. 

Structure « What if? » (SWIFT) This supporting method would 
be used in conjunction with a 
risk analysis and risk 
evaluation technique. 

The technique gives 
opportunities for improvement of 
processes (e.g. verification efforts  
in the software development 
life-cycle). 

 

If the need, time and resources allow, some dedicated techniques may be used for the purpose of 
each step of the Risk Analysis phase. The technique we present in the following table are again a 
selection of techniques described as strongly applicable (ISO/IEC 31010:2009): 
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Step of Risk 
Analysis 

Technique Key considerations Relevance in the 
context of safety and 
security verification 
tools 

Consequence Hazard and operability 
analysis or HAZOP 

The structured 
examination of a system 
will identify the risks and 
define the deviations 
from the expected or 
intended performances, 
rather than only 
focusing on well-known 
sources of accidents. 

Despite its complexity, 
HAZOP has the 
advantage of giving the 
possibility to anticipate 
unforeseen events. 

Probability Fault tree analysis The logical tree shaped 
diagram, starting from 
top with the undesired 
event, displays all the 
ways in which it could 
occur. 

Fault tree can be built 
from a FMEA/FMECA 
during verification and 
be used both 
qualitatively (pathways 
to failure) and 
quantitatively (for 
probabilities), useful for 
systems with many 
interfaces and 
interactions. 

Probability and 
Level of Risk 

Bow tie analysis The simple bow-tie 
shaped diagram 
displays causes and 
consequences of an 
event as well as the 
reviewing controls. 

Not requiring high level 
of expertise to use, it is 
clear to display for 
example controls for 
prevention and 
mitigation. It may over-
simplify the reality if 
compared with fault 
tree where 
simultaneous multiple 
causes can be 
illustrated. 

Level of risk Multi-criteria decision 
analysis (MCDA) 

A range of criteria, 
which are assigned 
weights, is used to order 
between options in a 
decision-making 
process. 

This technique is 
relevant in context of 
ranking criticality of 
alarms in the 
verification process. 
Where there are many 
alerts because of 
potential risks or 
vulnerabilities, the 
developer/validator 
needs a supporting tool 
to prioritize the alerts to 
handle. 
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5.2.4 Risk evaluation 

In this phase, the level of risk formulated in the risk analysis is compared to the risk criteria set when 
establishing the context. The significance of the level and the type of risk supports the decision 
making process towards the risk treatment phase. 
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Technique Key considerations Relevance in the context of 
safety and security verification 
tools 

Hazard Analysis and 
Critical Control Points 
(HACCP)  

Specific characteristics are 
checked to be within defined 
limits through this preventive 
system for assuring product 
quality, reliability 

and safety of processes. 

HACCP helps minimizing risks by 
controls throughout the process 
rather than through inspection of 
the end product. It can be applied 
on the stages of the verification 
process. 

Root cause analysis  See in risk analysis techniques See in risk analysis techniques 

Failure mode effect 
analysis (FMEA and 
FMECA) 

FMEA/FMECA allow to define 
significance levels. It also 
allows identifying how to avoid 
and/or mitigate failures and 
their effects on the system 

As criticality of alarms is a major 
issue in security and safety 
verification, the method can serve 
the purpose of ranking alarms.  

Reliability centred 
maintenance  

See in risk analysis techniques See in risk analysis techniques 

Monte Carlo simulation  This technique evaluates the 
effect of uncertainty on the 
system considered. 

Monte carlo simulation is a good 
candidate for supporting 
verification efforts at program 
lower levels, in that software 
algorithmic structure are prone to 
be fed with test inputs. However, 
being a resource consuming and 
complex technique, it may be 
difficult to engage stakeholders. 

Bayesian statistics and 
Bayes Nets  

This statistics approach 
displays variables and their 
probabilistic relationships.  

While the requirements are simple, 
the definition of the interactions for 
complex systems is problematic. In 
addition expert judgment 
assumptions are needed on a 
multitude of conditional 
probabilities. 

FN curves  FN stands for the cumulative 
frequency (F) at which N or 
more members of the 
population will be harmed. 

It is not intuitive how to integrate 
this technique to VESSEDIA, but 
the related concept of ALARP, by 
showing when a risk threshold is 
outreached, can support decision 
making for resolving an alert or 
initiating a treatment. 
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Technique Key considerations Relevance in the context of 
safety and security verification 
tools 

Risk indices  It is a risk estimate that uses 
ordinal scales. Scores can be 
applied to components of 
risks, allowing to rank the risks. 

It is a good tool for ranking risks, 
but the numerical value has to be 
used with care, as the quantitative 
value does not necessarily have 
other purpose than allowing 
manipulation. 

5.2.5 Conclusion 

For sake of simplicity and comfort of use, we noted that some techniques are strongly applicable 
throughout the whole of the three phases of the Risk assessment process, namely: 

• Environmental risk assessment 

• Structure “What if?” (SWIFT) 

• Reliability centred maintenance 

• Failure mode effect analysis (FMEA/FMECA) 

Among those, the FMEA/FMECA and reliability centered maintenance stand out.  FMEA/FMECA is 
a unique technique in that it can be independently applied throughout the risk assessment process. 
This technique also showed strong relevance in the context of use of software safety and security 
verification tools. In addition, the HAZOP technique (figuring out possible deviations starting from 
unwanted outcomes) can be used in conjunction with FMEA (using component failures as a starting 
point) during the risk analysis stage. This provides comprehensive insight on security and safety 
matters during the verification process. Reliability centered maintenance is very relevant for the 
maintenance stages of the verification process. 
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Chapter 6 Formal specification of simple security 

requirements with ACSL 

Static analysis approaches to software quality assurance range from a basic level, like compiler 
warnings, via heuristic-based tools, until mathematically rigorous formal methods. The latter are 
known to be powerful in their results, but they can be challenging to integrate in the development 
process. 

Some formal static analysis tools, such as Polyspace, Astree, and the EVA plug-in of Frama-C use 
a formal method called abstract interpretation to reliably identify undefined behaviour in embedded 
software that can lead to serious run time errors. An advantage of these tools is that they can work 
on large programs. A principal disadvantage is that they only over-approximate the behaviour of the 
program under analysis, and hence produce often quite a substantial number of false alarms. The 
investigation of false alarms typically requires the intervention of experts which tarnishes the 
marketing claims of a high degree of automation. 

On the other hand, formal static analysis tools that rely on deductive verification, such as the WP 
plug-in of Frama-C, can verify software properties whose complexity goes far beyond undefined 
behaviours. They require, however, that the expected behaviour is specified with explicit code 
annotations. These annotations are similar to Doxygen comments; however, they convey a machine-
understandable semantics against which the source code can be formally verified. While this sounds 
very promising, our experience shows that complex properties can be tackled only for relatively small 
and well-designed software components. This is sometimes a problem in practice where unduly large 
and poorly designed software components regularly occur. 

Abstract interpretation and deductive verification thus represent different ends of the spectrum of 
formal methods, their application areas apparently being quite complementary, yet they need not to 
be seen as unrelated approaches. In this chapter, we aim at combining the advantages of both 
approaches. 

 

6.1 The concept of minimal contracts 

In order to minimize the amount of manual specification effort, we are developing within the 
VESSEDIA project context a set of minimal function contract clauses, tailor-made to IoT security 
aspects. 

Devising full contracts for a given set of function implementations usually is a substantial amount of 
work. In addition, each loop in the code needs manual provision of own appropriate invariants, and 
often additional assert clauses are to be interspersed as verification hints to the provers employed 
by Frama-C/WP.  

In the context of VESSEDIA, where the main emphasis is on security properties, we can thus assign 
the available quality assurance efforts in a more efficient way by concentrating on the detection of 
undefined behaviours for a large part of the software, rather than devoting it to a full verification of a 
small part only. 

To this end, we investigate an approach using minimal contracts only, i.e. specifying just sufficient 
information for the verification of absence of run-time errors (RTE). A run-time error is here meant to 
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be undefined program behaviour in the sense of the C standard.39 Such behaviours are undesired 
irrespective of the program's intended functionality and include out-of-bounds memory accesses, 
division by zero, etc., which also can be checked by hardware at run-time. Other run-time errors 
include read access to uninitialized memory, (unintended) non-terminating loops, etc., which cannot. 

Abstract interpretation can be used with a high degree of automation to check for RTEs. However, it 
usually reports false positives, i.e. warnings about undesired program behaviours that are members 
of the computed approximation set of possible program behaviour, but not of the (incomputable) 
precise set. It would be desirable, after a manual post-analysis check for true/false positives, to 
provide appropriate hints to the tool that help to avoid known false positives for future runs. This kind 
of hints is exactly what we introduced above as minimal contracts. 

Minimal-contract annotations are reusable with some reasonable probability. That is, they are likely 
to guide Frama-C to a 100% verification rate even after minor changes in the implementation code. 

Verifying minimal contracts can be a synthesis of both approaches that combines each's 
advantages, viz. local specifications and global analysis. A minimal contract specifies just sufficient 
properties of a function to verify the absence of undefined behaviours. For example, the minimal 
contract of the function int abs(int) that computes the absolute value might just state that the 

result is non-negative and that no side effects occur. 

Contrary to a written report about manual post-analysis of abstract interpretation alarms, minimal 
contract annotations are reusable with high probability for follow-up analyses of the software. On the 
other hand, specifying and verifying of minimal contracts requires far less effort than more elaborate 
contracts for the business logic. 

Using minimal contracts helps assigning the available efforts for quality assurance in a more efficient 
way by concentrating on run-time error detection for a large part of the software, rather than devoting 
it to the verification of complex properties for a small part only. In practical projects, this selectivity 
gains the more importance as the main emphasis is on particular aspects of software quality, such 
as security issues.  

Within the collaborative effort of VESSEDIA task 1.1, FOKUS has annotated a critical part of a 
INRIA’s Contiki use-case with minimal contracts (i.e. RTE requirements only) and started to evaluate 
the practical feasibility of this approach. This work is described in the following. We demonstrate the 
methodology we developed during this case-study to enable tool-support in writing minimal 
contracts. We discuss the issue of a basic library function needing additional requirements on its 
result range in order to verify a minimal contract of its caller. As a first step towards increased 
software robustness, we strongly recommend to include minimal contract information into the 
informal documentation (e.g. Doxygen) of each function. In the Contiki software, we actually found 
a run-time error during computation of a value that was, however, never used. We briefly discuss 
the pros and cons of ostracizing such kind of code. 

 

6.2 Description of the software for annotation  

In order to evaluate our minimal-contracts approach in a more realistic context, we performed a 
medium-scale annotation experiment within Task 1.1 of the VESSEDIA project. As target we chose 
a subset of the Contiki operating system, which is the use-case provided by INRIA and handled in 
VESSEDIA task 5.1. 

Contiki is an Operating System for the Internet of Things. It was among the pioneers in advocating 
IP in the low-power wireless world. In particular, it features a 6LoWPAN stack, that is, a compressed 
IPv6 stack for IEEE 802.15.4 communication. This enables constrained devices to inter-operate and 

                                                

39 Since most abstract interpretation tools, as well as most deductive verification tools, are available for C, we restrict to 
this language. Comparable, but less versatile, tool support is available for Ada and Java. An extension of Frama-C to C++ 
is currently under development. 
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connect directly to the Internet. Sensors, actuators or consumer devices can be brought together 
and create applications in various areas such as home automation or the smart grid. 

Contiki is targeted at constrained devices with an 8, 16 or 32-bit MCU and no MMU. The devices 
usually feature a low-power radio module, some sensors, a few kB RAM and tens of kB ROM. Contiki 
has a kernel, written in portable C, which is linked to platform-specific drivers at compile-time. It 
supports more than 35 different hardware platforms. 

When Contiki started in 2003, the focus was on enabling communication in the most constrained 
devices, with no particular attention given to security. As it matured and as commercial applications 
arose, communication security was added at different layers, via standard protocols such as IPsec 
or DTLS. The security of the software itself, however, did not receive much attention. Although a 
continuous integration system is in place, it lacks serious quality assurance efforts and, not 
surprisingly, does not rely on formal verification. 

Selected modules of Contiki have already been verified with Frama-C/WP. 

In a VESSEDIA WP1 meeting in March 2017, the modules of Contiki were assessed with respect to 
their priority in the project. Two of them, lib and sys, were assessed as highly critical, and were 

assigned top priority. The former is concerned with memory management, lists, cryptography, etc., 
while the latter contains core operating system components like scheduler and timers. We 
concentrated our efforts on module lib, and had a glance at module sys. 

 

6.3 Minimal-contract verification of selected files  

We found that Frama-C/WP was easy to use for the native configuration of Contiki. However, it is 
important to keep in mind that Contiki has a huge amount of configuration parameters. 

The main emphasis of Frama-C has been initially on analysis of embedded software. As a 
consequence, we had experienced problems with Frama-C support for software running on standard 
platforms, like e.g. Linux, where appropriately adapted versions are unavailable for less commonly-
used include files. In such cases, manual adaptation of existing include files, often causing additional 
discussion with the software provider, had been necessary before start of analysis. 

In contrast, Contiki is a fully self-contained operating system that comes with its own include files. At 
least in the modules we considered for analysis, no adaptation of the latter was necessary. 

For the Frama-C setup, we obtained the necessary pre-processor directives from the output of the 
build process for a hello-world application which was recommended for tutorial purposes by the main 
README file of the Contiki sources. These directives are rather lengthy and hence are not shown 
here in detail. We also employed an external Frama-C/WP driver file registering a file Lemmas.v 

which contains some ACSL lemmas and their Coq proofs. 

• For the following files, we built minimal contracts and verified them:  
o lib/crc16.c 
o lib/gcr16.c 
o lib/ifft.c 
o lib/ringbuf.c 
o lib/ringbufindex.c 

• Besides these files we found that some files were trivial to analyse. No manual annotations 
were needed for them in order to make Frama-C prove the absence of run-time exceptions. 
These were:  

o lib/assert.c 
o lib/metabs.c 
o lib/print-stats.c 
o lib/random.c 
o lib/settings.c 
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o sys/arg.c 
o sys/energest.c 

• On the other hand, some files were intractable, i.e. couldn't be handled with Frama-C/WP 
due to implementation restrictions. These were, grouped by intractability reason: 

• validity of unsized-array not implemented yet:  
o lib/sensors.c 
o sys/procinit.c 

• \valid_function not yet implemented:  
o lib/aes-128.c 
o lib/ccm-star.c 
o lib/trickle-timer.c 
o sys/process.c 
o sys/rtimer.c 

• calculus failed on strategy for XXX behaviour YYY, all properties, both assigns or not 
because unsupported non-natural loop(s): try [-wp-invariants] option (abort):  
o sys/ctimer.c 
o sys/etimer.c 

• Finally, the following files can be handled by Frama-C, but require additional manual 
annotations that we did not yet provide:  

o lib/crc16.c 
o lib/gcr.c 
o lib/list.c 
o lib/me.c 
o lib/memb.c 
o lib/mmem.c 
o lib/petsciiconv.c 
o sys/autostart.c 
o sys/compower.c 
o sys/mt.c 
o sys/stimer.c 
o sys/timer.c 

For details, we refer to the technical report "Annotating IoT-Software With Minimal Contracts" (May 
2017). 

 

6.4 Discussion 

In this chapter, we discuss our experiences and give some preliminary conclusions.  

As a future work, it remains to be investigated if and how minimal contracts can be helpful in 
combining static and analyses and testing. Checks of parameter range limits can be automatically 
generated from a contract. On the other hand, array length information can't be observed e.g. in a 
running C program, but is important for fuzzing tools, and can be taken from a minimal contract. 

6.4.1 A methodology to obtain minimal contracts 

From our experience with the case study, we suggest the following methodology to write and verify 
minimal contracts. 

• Provide an assigns clause for the function. 

• Provide an assigns clause for each loop in its body. 
o Both clause sets just collect the memory locations that may be altered. 

• Provide a variant clause for each loop, to establish its termination. 

• Run "frama-c -wp -wp-rte" to obtain possible run-time errors. 
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• Repeatedly enhance the contract until that run doesn't report any unproven obligations. 

• For an array access a[i] out of bounds: 

o Add a function requirement \valid (read/write access) or \valid_read (read-only 
access) about the size of a. 

o Make sure the array size is reasonable; requiring it to be greater than zero might 
suffice. 

o Take care of establishing the index expression i is within the array size. 
▪ In the frequent case that i is the running variable of a simple loop  

for (i=0; i<n; ++i), it will usually be sufficient to add the annotation  

/*@ loop invariant 0 <= i <=n */ 

• In the final contracts version, check if Frama-C happens to be able to prove "for free" any 
additional property suggesting itself. 

• Often a clause about the result value's range can be established which may be helpful later 
on in the minimal-contract verification of other functions. 

This summarizes our typical approach in cases where no particular issues occurred. The latter are 
discussed separately in the following subsections. 

6.4.2 Context dependency 

During our experiments we experienced (unsurprisingly) that the notion of a function's minimal 
contract depends on the context the function is used in. 

For a simple illustrating example, assume a function foo(int n) just performs some simple 

arithmetic on its argument n, and won't cause a run-time error if 0 < n holds. That is, in a standalone 

context, the latter requirement is minimal to guarantee absence of run-time errors. 

However, if e.g. foo is called inside another function, bar, and the result of the former is used as an 

array index, the array size induces another constraint, now on the result value of foo. 

Arbitrarily complex properties may arise in this way as ensures clauses in minimal contracts. 

In this sense, there is a smooth transition from minimal to full contracts. However, as our experiments 
show, for the overwhelming majority of functions minimal contracts are much simpler and more 
tractable than full ones.  

6.4.3 Prover limitations 

We encountered problems in verifying even simple properties about bit operations, in particular 
shifting. This is a common problem with Frama-C/WP. Such operations are rarely used in average 
software, and their verification support is therefore neglected to a certain extent. Our application, 
however, was taken from the low-level application domain of operating system kernels, and hence 
used these operations more often. We could circumvent most problems by devising appropriate 
ACSL lemmas and proving them manually with Coq, which required a considerable amount of work. 

6.4.4 Visibility issues 

It is well-known that–contrary to naive expectation–Frama-C cannot rely on const data fields being 

unaltered. However, when a field is additionally declared static, i.e. local to its file,  

Frama-C/WP could check whether the file contains code that might alter the field, and if not, rely on 
the initial values being kept forever. As soon as data invariants are supported by Frama-C/WP, they 
can be used express immutability of the data field. 

Since the Contiki code is self-contained, we didn't have problems writing appropriate assigns 
clauses. However, in general a software may call routines from an external library, where the 
memory footprint is unknown or can only be guessed. For example, after an initialization call 
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foo(&data), a call bar(&data) may, or may not, alter the contents of the local variable data, 

depending on the implementation of the external module both foo and bar belong to. 

6.4.5 Tacit prerequisites 

We found that some functions might cause an RTE, unless their parameters are restricted beyond 
what the documentation requires. For example, the array sizes of the Fast Fourier Transform function 
needed to be a power of two. While a look into a textbook indicated that this requirement goes without 
saying, we consider it good practice to state it nevertheless explicitly in the functions informal 
description. 

6.4.6 Dispensible RTE programming 

Using our minimal-contracts methodology, we found an actual underflow in the code. However, the 
underflown value could be shown not to be used. From a conceptional point of view, this kind of 
practice forces us to distinguish between 

• run-time errors that actually occur and 

• run-time errors that influence the program behaviour. 

Note that hardware-implemented protection mechanisms don’t admit this distinction: e.g. a read from 
a non-existing memory location will cause the MMU to throw an interrupt, even if the read value is 
never used. 

Thus, we consider it a valid point of view to reject programs that have an RTE, even if it can't cause 
any damage. A warning to the programmer should be issued in such a case anyway.  

This issue should be discussed among all project partners to find a consensus. 
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Chapter 7 Summary and Conclusion 

As commonly said, the “S” in the IoT stands for security, it is either non-existent or unnoticeable. 
However with the increasing use of the internet connected products, this insufficient security is 
becoming more and more relevant. The VESSEDIA project aims to address this issue, by providing 
the developers with software analysis tools, which can be used to enhance security, and which also 
have the capability to be used during a certification process.  

To achieve the goal of the VESSEDIA project, we gathered the most important security aspects of 
the IoT. Determining the general security requirements is a hard task, since the requirements depend 
on a lot of factors, like the architectural and device specific constraints or other environmental factors.  
During our work, we set the requirements on a system level, so the results can be applied to several 
use cases. Although the presented requirements do not cover every aspects of security, it gives an 
overview, what are the most important areas which have to be addressed during the design phase, 
and it can be used as a starting point during the development or security evaluation. 

This document will serve multiple purposes during the VESSEDIA project. The security properties in 
this document will be directly examined during the evaluation of the use cases, and it also highlights 
potential areas, where the VESSEDIA tools can be applied during a verification process. It is also 
gives a general overview on the field of security, which helps for setting the general direction of 
further development. During our work, we will apply these conclusions and examine how these 
results can be incorporated into the future work of the VESSEDIA project. 
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Glossary 

Abbreviation Translation 

Asset Assets are entities that someone places value upon.  

(from CC– ISO/IEC 15408). 

Examples:  

• [Asset 1] Confidential data, 

• [Asset 2] Service or access to a service, 

• [Asset 3] A given functionality, 

... 

Attack / attacker An actor willing to cause harm. Harm is caused deliberately, so if the 
possibility is there, we should assume that the attack will take place. 

Attack surface The lack of specific separations and functional controls that exist for that 
[attack] vector. 

In other words, the set of all inputs that the code uses, and which should 
be considered to be in the control of an attacker. 

Attack tree Multi-levelled diagrams describing either multiple steps, conditions, or 
kinds of a complex attacks. 

Attack trees are related to fault trees (used in safety analysis) since a 
node, in an attack tree, is considered realized when a Boolean operation 
is satisfied on its children nodes. 

Attack Vector Vector generally describes an interaction on an IT product. 

An attack vector is a single- or multi-step method by which an attacker 
exploits a vulnerability in an IT product. 

Backdoor  
(also called trapdoor) 

Confidential access point to functionality of an IT product.  

A backdoor can be created by the developers of the product or by an 
attacker as a part of an attack vector.  

Bug A flaw describes a vulnerability introduced at the implementation level 
of an IT product. 

Example: Vulnerability [Vul_secretprotect] would be a bug. 

Computer security 
model / Security 
properties 

A computer security model is a scheme which aims at enforcing a 
security policy. Such a model is generally based on security properties, 
which are constraints that must be enforced by the concerned system, 
and often expressed as logical assertions. 

Some examples of computer security models are Bell-LaPadula, Brewer 
and Nash Clark-Wilson, LBAC or RBAC (Lattice-based and Role-based 
access models). 
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Abbreviation Translation 

DSP Digital Service Provider 

ENISA European Union Agency for Network and Information Security 

Flaw A flaw describes a vulnerability introduced at the design level of an IT 
product. 

Examples: Vulnerabilities [Vul_repeat] and [Vul_bruteforce] would be 
flaws. 

i18n Usual abbreviation of the word internationalization, denoting starting “i” 
and closing “n”, in between which there are 18 characters. 

NVD National Vulnerability Database 

OES Operators of Essential Services 

Safety The degree to which accidental harm is prevented, detected, and 
reacted to.  

(from Common Concepts Underlying Safety, Security, and Survivability 
Engineering – SEI - CMU/SEI-2003-TN-033) 

In case of safety accidental harm means that undesired events are 
caused by “mother nature” and not deliberately by an intelligent actor. 

Security The degree to which malicious harm is prevented, detected, and reacted 
to. 

(from Common Concepts Underlying Safety, Security, and Survivability 
Engineering – SEI - CMU/SEI-2003-TN-033) 

Malicious harm means that in case of dealing with security we always 
have to assume the presence of an attacker, who is an intelligent actor 
looking for possibilities of an attack. 

Security objective A security objective is the statement of an intent to counter identified 
threats.  

(simplified, from CC– ISO/IEC 15408) 

Examples:  

• [Threat 1] would be covered by [Objective 1]: [Asset 1] shall not 
be available in plain text until user authentication is successfully 
performed, 

• ... 

Security objectives are high-level statements, and need to be 
implemented through security functional requirements. 

Security policy  A security policy is a consistent set of rules intended to cover security 
objectives. Security policies can typically be implemented as a set of 
security functional requirements. 
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Abbreviation Translation 

Security requirement Security requirements are non-ambiguous and verifiable statements 
implementing security objectives. They may include: 

• Security assurance requirements, which lead to organizational 
means (rules, procedures, guidelines), or 

• Security functional requirements, within an IT product. 

The term “security requirement” will hereafter be considered a synonym 
to “security functional requirement”, since this study focuses on 
requirements that are to be implemented in a product. 

NB: Security requirements are commonly expected to be architecture- 
and implementation-independent:  

• Common Criteria has standardized several Security Functional 
Requirement, which are all architecture- or implementation 
independent 

• SQUARE methodology considers a mistake to “elicit 
implementations or architectural constraints instead of 
requirements” and states that “requirements are concerned with 
what the system should do, not how it should be done”. 

Examples: [Objective 1] would be covered by  

• [Req_auth] The TOE shall authenticate each user before 
allowing any action 

• [Req_user_secret] The TOE shall use [user secret X] to 
authenticate users 

• [Req_keygen] The TOE shall generate cryptographic keys with 
[algorithm X] and [keysize Y] 

• [Req_dataencrypt] The TOE shall encrypt/decrypt [Asset 1] with 
[algorithm X] and [keysize Y] 

... 

TCB Trusted Computing Base 

Threat A threat is an adverse action on an asset. 

(from CC– ISO/IEC 15408) 

Examples:  

• [Threat 1] An attacker tries to disclose [Asset 1], 

• [Threat 2] An attacker performs a denial of service on [Asset 2], 

• [Threat 3] An attacker modifies the operation of [Asset 3], 

• ... 

In particular, a threat can be considered a breach to security attributes 
on assets, such security attributes being e.g. the “CIA triad” 
(Confidentiality/Integrity/Availability, see section 2.3.1 

TOE Target of Evaluation, i.e. the system that is being evaluated, in our 
context from security point of view. 
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Abbreviation Translation 

Trojan horse A program which appears to perform a legitimate or useful functionality, 
while concealing malicious functions such as backdoor, data theft, 
keyboard logging, etc. 

TSF TOE Security Function 

Virus A virus is a program which has the capacity to spread and replicate itself 
when executed by a user. In order to be executed, a virus attaches itself 
to a legitimate executable file, a boot sector, a script or a macro (in this 
sense it basically uses the file system to spread).  

Viruses do not necessarily perform malicious actions on top of their 
replication functionalities. 

Vulnerability A vulnerability is a flaw or weakness in a system's design, 
implementation, or operation, procedure and management that could be 
exploited to violate the system's security policy. 

(based on RFC 2828) 

Consequently a threat can also be seen as a potential threat. 

Examples: 

• [Vul_repeat] Not having a control on the number of 
authentication attempts can be a vulnerability to [Req_auth], as 
it enables an attacker to perform a repeat attack. 

• [Vul_secretprotect] An implementation flaw enables an attacker 
to access plain text user secrets in memory space. 

[Vul_bruteforce] the algorithm used to generate cryptographic keys is 
vulnerable to brute force attack. 

Worm A worm is a program which has the capacity to spread and replicate 
automatically. Unlike a virus, a worm does not require an action from the 
user, and generally use network vulnerabilities to spread.  

Worms do not necessarily perform malicious actions on top of their 
replication functionalities. 

Zero-day attack A zero-day attack consists in exploiting a zero-day vulnerability. 

Zero-day vulnerability A yet undisclosed vulnerability, unknown to the developer and not fixed. 
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